GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
  • Wang, Weixuan  (2)
  • English  (2)
Material
Publisher
  • Oxford University Press (OUP)  (2)
Language
  • English  (2)
Years
  • 1
    In: Plant Physiology, Oxford University Press (OUP), Vol. 162, No. 1 ( 2013-05-02), p. 440-455
    Abstract: Transcriptome analysis of early-developing maize (Zea mays) seed was conducted using Illumina sequencing. We mapped 11,074,508 and 11,495,788 paired-end reads from endosperm and embryo, respectively, at 9 d after pollination to define gene structure and alternative splicing events as well as transcriptional regulators of gene expression to quantify transcript abundance in both embryo and endosperm. We identified a large number of novel transcribed regions that did not fall within maize annotated regions, and many of the novel transcribed regions were tissue-specifically expressed. We found that 50.7% (8,556 of 16,878) of multiexonic genes were alternatively spliced, and some transcript isoforms were specifically expressed either in endosperm or in embryo. In addition, a total of 46 trans-splicing events, with nine intrachromosomal events and 37 interchromosomal events, were found in our data set. Many metabolic activities were specifically assigned to endosperm and embryo, such as starch biosynthesis in endosperm and lipid biosynthesis in embryo. Finally, a number of transcription factors and imprinting genes were found to be specifically expressed in embryo or endosperm. This data set will aid in understanding how embryo/endosperm development in maize is differentially regulated.
    Type of Medium: Online Resource
    ISSN: 1532-2548
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2013
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Genomics, Proteomics & Bioinformatics Vol. 20, No. 4 ( 2022-08-01), p. 657-669
    In: Genomics, Proteomics & Bioinformatics, Oxford University Press (OUP), Vol. 20, No. 4 ( 2022-08-01), p. 657-669
    Abstract: Clear cell renal cell carcinoma (ccRCC) is a frequently occurring renal cancer. The Von Hippel-Lindau disease tumor suppressor VHL, a known tumor suppressor gene, is frequently mutated in about 50% of patients with ccRCC. However, it is unclear whether VHL influences the progression of ccRCC tumors expressing wild-type VHL. In the present study, we found that higher expression of VHL was correlated with the better disease-free survival (DFS) in ccRCC patients using The Cancer Genome Atlas (TCGA) datasets. We revealed that VHL overexpression in ccRCC cells inhibited epithelial-mesenchymal transition (EMT), sterol regulatory element-binding protein 1 (SREBP1)-regulated triglyceride synthesis, and cell proliferation. Proteomic analysis provided us a global view that VHL regulated four biological processes, including metabolism, immune regulation, apoptosis, and cell movement. Importantly, we found that VHL overexpression led to up-regulated expression of proteins associated with antigen processing and interferon-responsive proteins, thus rendering ccRCC cells more sensitive to interferon treatment. We defined an interferon-responsive signature (IRS) composed of ten interferon-responsive proteins, whose mRNA expression levels were positively correlated with DFS in ccRCC patients. Taken together, our results propose that the subset of ccRCC patients with high VHL expression benefit from immunotherapy.
    Type of Medium: Online Resource
    ISSN: 1672-0229 , 2210-3244
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2233708-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...