GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Shao, Qun  (6)
  • English  (6)
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 10 ( 2022-05-20), p. 5724-
    Abstract: Quinoa is a cold-resistant and nutrient-rich crop. To decipher the cold stress response of quinoa, the full-length transcriptomes of the cold-resistant quinoa variety CRQ64 and the cold-sensitive quinoa variety CSQ5 were compared. We identified 55,389 novel isoforms and 6432 novel genes in these transcriptomes. Under cold stress, CRQ64 had more differentially expressed genes (DEGs) and differentially alternative splicing events compared to non-stress conditions than CSQ5. DEGs that were specifically present only in CRQ64 were significantly enriched in processes which contribute to osmoregulation and ROS homeostasis in plants, such as sucrose metabolism and phenylpropanoid biosynthesis. More genes with differential alternative splicing under cold stress were enriched in peroxidase functions in CRQ64. In total, 5988 transcription factors and 2956 long non-coding RNAs (LncRNAs) were detected in this dataset. Many of these had altered expression patterns under cold stress compared to non-stress conditions. Our transcriptome results demonstrate that CRQ64 undergoes a wider stress response than CSQ5 under cold stress. Our results improved the annotation of the quinoa genome and provide new insight into the mechanisms of cold resistance in quinoa.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Integrative Plant Biology, Wiley, Vol. 60, No. 7 ( 2018-07), p. 591-607
    Abstract: Hydrogen peroxide (H 2 O 2 ) is generated in many metabolic processes. As a signaling molecule, H 2 O 2 plays important roles in plant growth and development, as well as environmental stress response. In Arabidopsis , there are three catalase genes, CAT1 , CAT2 , and CAT3 . The encoded catalases are predominately peroxisomal proteins and are critical for scavenging H 2 O 2 . Since CAT1 and CAT3 are linked on chromosome 1, it has been almost impossible to generate cat1/3 and cat1/2/3 mutants by traditional genetic tools. In this study, we constructed cat1/3 double mutants and cat1/2/3 triple mutants by CRISPR/Cas9 to investigate the role of catalases. The cat1/2/3 triple mutants displayed severe redox disturbance and growth defects under physiological conditions compared with wild‐type and the cat2/3 double mutants. Transcriptome analysis showed a more profound transcriptional response in the cat1/2/3 triple mutants compared to the cat2/3 mutants. These differentially expressed genes are involved in plant growth regulation as well as abiotic and biotic stress responses. In addition, expression of OXI1 ( OXIDATIVE SIGNAL INDUCIBLE 1 ) and several MAPK cascade genes were changed dramatically in the catalase triple mutant, suggesting that H 2 O 2 produced in peroxisomes could serve as a peroxisomal retrograde signal.
    Type of Medium: Online Resource
    ISSN: 1672-9072 , 1744-7909
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2130095-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  International Journal of Molecular Sciences Vol. 24, No. 8 ( 2023-04-19), p. 7476-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 8 ( 2023-04-19), p. 7476-
    Abstract: Lipid droplets (LDs) are ubiquitous, dynamic organelles found in almost all organisms, including animals, protists, plants and prokaryotes. The cell biology of LDs, especially biogenesis, has attracted increasing attention in recent decades because of their important role in cellular lipid metabolism and other newly identified processes. Emerging evidence suggests that LD biogenesis is a highly coordinated and stepwise process in animals and yeasts, occurring at specific sites of the endoplasmic reticulum (ER) that are defined by both evolutionarily conserved and organism- and cell type-specific LD lipids and proteins. In plants, understanding of the mechanistic details of LD formation is elusive as many questions remain. In some ways LD biogenesis differs between plants and animals. Several homologous proteins involved in the regulation of animal LD formation in plants have been identified. We try to describe how these proteins are synthesized, transported to the ER and specifically targeted to LD, and how these proteins participate in the regulation of LD biogenesis. Here, we review current work on the molecular processes that control LD formation in plant cells and highlight the proteins that govern this process, hoping to provide useful clues for future research.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: New Phytologist, Wiley, Vol. 238, No. 5 ( 2023-06), p. 1889-1907
    Abstract: Alternative splicing of pre‐mRNAs is crucial for plant growth and development. Serine/arginine‐rich (SR) proteins are a conserved family of RNA‐binding proteins that are critical for both constitutive and alternative splicing. However, how phosphorylation of SR proteins regulates gene transcription and alternative splicing during plant development is poorly understood. We found that the Arabidopsis thaliana L. SR protein‐specific kinase II family proteins (SRPKIIs) play an important role in plant development, including flowering. SRPKIIs regulate the phosphorylation status of a subset of specific SR proteins, including SR45 and SC35, which subsequently mediates their subcellular localization. A phospho‐dead SR45 mutant inhibits the assembly of the apoptosis‐and splicing‐associated protein complex and thereby upregulates the expression of FLOWERING LOCUS C ( FLC ) via epigenetic modification. The splicing efficiency of FLC introns was significantly increased in the shoot apex of the srpkii mutant. Transcriptomic analysis revealed that SRPKIIs regulate the alternative splicing of c . 400 genes, which largely overlap with those regulated by SR45 and SC35‐SCL family proteins. In summary, we found that Arabidopsis SRPKIIs specifically affect the phosphorylation status of a subset SR proteins and regulate the expression and alternative splicing of FLC to control flowering time.
    Type of Medium: Online Resource
    ISSN: 0028-646X , 1469-8137
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 208885-X
    detail.hit.zdb_id: 1472194-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 14 ( 2023-07-22), p. 11789-
    Abstract: Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous cereal that is rich in nutrients. This important crop has been shown to have significant tolerance to abiotic stresses such as salinization and drought. Understanding the underlying mechanism of stress response in quinoa would be a significant advantage for breeding crops with stress tolerance. Here, we treated the low-altitude quinoa cultivar CM499 with either NaCl (200 mM), Na2CO3/NaHCO3 (100 mM, pH 9.0) or PEG6000 (10%) to induce salinity, alkalinity and hypertonia, respectively, and analyzed the subsequent expression of genes and small RNAs via high-throughput sequencing. A list of known/novel genes were identified in quinoa, and the ones responding to different stresses were selected. The known/novel quinoa miRNAs were also identified, and the target genes of the stress response ones were predicted. Both the differently expressed genes and the targets of differently expressed miRNAs were found to be enriched for reactive oxygen species homeostasis, hormone signaling, cell wall synthesis, transcription factors and some other factors. Furthermore, we detected changes in reactive oxygen species accumulation, hormone (auxin and ethylene) responses and hemicellulose synthesis in quinoa seedlings treated with stresses, indicating their important roles in the response to saline, alkaline or hyperosmotic stresses in quinoa. Thus, our work provides useful information for understanding the mechanism of abiotic stress responses in quinoa, which would provide clues for improving breeding for quinoa and other crops.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 21 ( 2022-10-30), p. 13204-
    Abstract: Very-long-chain fatty acids (VLCFAs) are precursors for the synthesis of various lipids, such as triacylglycerols, sphingolipids, cuticular waxes, and suberin monomers, which play important roles in plant growth and stress responses. However, the underlying molecular mechanism regulating VLCFAs’ biosynthesis in quinoa (Chenopodium quinoa Willd.) remains unclear. In this study, we identified and functionally characterized putative 3-ketoacyl-CoA synthases (KCSs) from quinoa. Among these KCS genes, CqKCS2B.1 showed high transcript levels in the root tissues and these were rapidly induced by salt stress. CqKCS2B.1 was localized to the endoplasmic reticulum. Overexpression of CqKCS2B.1 in Arabidopsis resulted in significantly longer primary roots and more lateral roots. Ectopic expression of CqKCS2B.1 in Arabidopsis promoted the accumulation of suberin monomers. The occurrence of VLCFAs with C22–C24 chain lengths in the overexpression lines suggested that CqKCS2B.1 plays an important role in the elongation of VLCFAs from C20 to C24. The transgenic lines of overexpressed CqKCS2B.1 showed increased salt tolerance, as indicated by an increased germination rate and improved plant growth and survival under salt stress. These findings highlight the significant role of CqKCS2B.1 in VLCFAs’ production, thereby regulating suberin biosynthesis and responses to salt stress. CqKCS2B.1 could be utilized as a candidate gene locus to breed superior, stress-tolerant quinoa cultivars.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...