GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 2715-2715
    Abstract: Multiple myeloma (MM) is the second most common hematologic malignancy. In 2017, MM accounted for approximately 30,770 new diagnoses and 12770 deaths in the US. Although, advancements in treatment options have increased survival rates and life expectancy, MM remains incurable due to development of resistance. Venetoclax is a highly selective, potent BCL-2 antagonist, currently in phase I/II trials for MM and FDA approved for the treatment of CLL patients exhibiting 17p deletion. Venetoclax is effective in eliciting cell death as a single agent in a subset of MM with the (11;14) translocation (which we henceforth designate “sensitive”) in contrast to the majority of MM that is resistant (which we henceforth designate “resistant”). We previously reported that glutamine deprivation increases BIM binding to BCL-2 thereby sensitizing MM to venetoclax, while alpha-ketoglutarate supplementation reversed this sensitivity. We were therefore interested to explore if there was a metabolic basis for t(11;14)-myeloma sensitivity to single agent venetoclax to aid in 1) identifying venetoclax sensitive MM and; 2) inform us of metabolic targets that could be inhibited to sensitize resistant MM to venetoclax. We first queried the CoMMpass MM patient RNAseq trial data and cell lines for electron transport chain (ETC) and TCA cycle gene expression differences in t(11;14) vs non-t(11;14) patients and cell lines. All sensitive cells exhibited varied suppression of TCA/ETC genes, and reduced TCA cycle metabolites and oxygen consumption rates (OCR) compared to resistant cells. Examination of TCA cycle activities connected to the ETC and OCR showed significant decrease in Complex II Succinate ubiquinone reductase (SQR) activity in sensitive cell lines and purified CD38+ve MM patient cells and elevated SQR activity in resistant cells. Furthermore, inhibition of SQR with thenoyltrifluoroacetone (TTFA) sensitized resistant cells to venetoclax. Consistent with SQR inhibition leading to ABT-199 sensitivity, overexpression of an SQR mutant (SDHCR72C) in SDHC-knockout resistant MM, increased venetoclax sensitivity, identifying a unique role for SQR in regulating BCL-2 dependence. In interrogating the mechanistic underpinnings of SQR inhibition-induced sensitivity to venetoclax, we identified increased expression of ATF4 and BIM upon SQR inhibition. ATF4KD or BIMKO restored viability in TTFA and venetoclax co-treated MM further confirming the role of SQR inhibition-induced ATF4 and BIM in venetoclax sensitivity. In testing translationally relevant compounds, we determined that the histone deacetylase inhibitor, panobinostat reduced SQR activity in a dose dependent manner and sensitized MM cells to venetoclax. Our study thus identifies SQR as a novel target and predictive marker to aid in identifying ABT-199-responsive MM patients in a functional biomarker informed manner. Citation Format: Richa Bajpai, Abhinav Achreja, Changyong Wei, Arusha Siddiqa, Shannon M. Matulis, Vikas Gupta, Samuel K. McBrayer, Anjali Mittal, Manali Rupji, Hsiao-Rong Chen, Jeanne Kowalski, Sagar Lonial, Ajay K. Nooka, Lawrence H. Boise, Deepak Nagrath, Mala Shanmugam. Deciphering a metabolic basis for single-agent venetoclax efficacy in t(11;14) multiple myeloma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2715.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1611-1611
    Abstract: INTRODUCTION Proteasome inhibitors (PI) such as bortezomib (Velcade), carfilzomib (Kyprolis) and ixazomib (Ninlaro)) have been shown to be efficacious in multiple myeloma (MM) therapy. However, despite being an effective first line therapy, resistance to PI usually develops, leading to relapse and refractory disease. Previous studies have implicated a role of OXPHOS, glycolysis, antioxidants and serine metabolism in PI resistance. Mitochondrial metabolism plays a central role in malignant progression not only by generating ATP but also by providing precursors for synthesis of several biomolecules such as proteins, nucleotides, fatty acids and antioxidants that can influence the efficacy of MM therapies. We previously determined reduced mitochondrial electron transport chain (ETC) activity promotes sensitivity to the BCL-2 antagonist, venetoclax. However, the relationship between the metabolic state of the mitochondria and proteasome inhibitor (PI) sensitivity is not fully understood. Unexpectedly, we found ETC inhibition or reduced ETC activity to promote resistance to PIs. Here, we investigate the mechanistic basis for divergent effects of mitochondrial stress on sensitivity to PIs and venetoclax. METHODS We have used RNA-Seq and carbon isotope tracing using labeled U 13C-glucose or U 13C-glutamine, flow cytometry and western blot analysis in MM cell lines treated with mitochondrial Complex I inhibitor, IACS-010759 (IACS) +/- Bortezomib; and immunostaining of MM patient samples and interrogation of Multiple Myeloma Research Foundation's CoMMpass Study (NCT01454297, Interim Analysis 15). RESULTS We find that mitochondrial ETC (complex I-V) inhibition antagonizes bortezomib (BTZ) and carfilzomib (CFZ) induced cell death in MM in contrast to promoting sensitivity to venetoclax. Additionally, cell lines exhibiting intrinsically reduced ETC activity were more resistant to PI in comparison to cell lines with higher ETC activity. Evaluation of CoMMpass MM trial (NCT0145429, IA15) and serial samples from 50 patients before PI treatment and after relapse, show pathways related to OXPHOS and TCA cycle to be downregulated in poor survival patients, corroborating our in vitro observations on reduced ETC activity promoting resistance to PI. To elucidate the mechanistic basis of ETC-inhibition induced PI resistance we performed RNA-Seq and U 13C-glucose and glutamine tracing in L363 cells treated with the ETC Complex I inhibitor IACS +/- BTZ. RNA-Seq analysis and further confirmation by western blot analysis reveals integrated stress response (ISR) upregulation, ATF4 induction, and suppression of protein translation and global protein ubiquitination levels, likely responsible for resistance to proteasome inhibition in cells co-treated with IACS and BTZ compared to BTZ alone. Stable isotope tracing reveals an upregulation of reductive carboxylation; while RNA-Seq data and flow cytometry demonstrate increase in the cystine/glutamate transporter SLC7A11. The ensuing metabolic rewiring in mitochondrially suppressed MM induces several metabolic vulnerabilities including sensitivity to the SLC7A11 inhibitor, erastin. We also show that knockdown of ATF4 re-sensitizes ETC-inhibited cells to BTZ while ablating sensitivity to venetoclax (previously reported). Furthermore, examination of patient samples demonstrates inter-cellular heterogeneity in ATF4 expression. Our results thus, support the role ATF4 as key determinants of PI and BCL-2 antagonist efficacy. CONCLUSION We show mitochondrial ETC inhibition induces ISR mediated resistance to PI. These ETC-inhibited cells are however sensitive to BCL-2 antagonists and afford additional metabolic vulnerabilities that can be capitalized upon to target metabolic heterogeneity in MM. Our study underscores the need for implementing combinatorial regimens in MM cognizant of mitochondrial metabolic heterogeneity-mediated resistance. Disclosures Lonial: Janssen: Consultancy, Honoraria, Research Funding; BMS/Celgene: Consultancy, Honoraria, Research Funding; AMGEN: Consultancy, Honoraria; GlaxoSmithKline: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria; TG Therapeutics: Membership on an entity's Board of Directors or advisory committees; Merck: Honoraria. Boise: AstraZeneca: Consultancy, Research Funding; Abbvie: Consultancy. Jaye: Stemline Therapeutics: Honoraria. Nooka: Janssen Oncology: Consultancy, Research Funding; GlaxoSmithKline: Consultancy, Other: Travel expenses; Sanofi: Consultancy; Bristol-Myers Squibb: Consultancy; Takeda: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Oncopeptides: Consultancy; Adaptive technologies: Consultancy; Karyopharm Therapeutics: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 8, No. 39 ( 2022-09-30)
    Abstract: Inhibition of the electron transport chain/OXPHOS promotes resistance to proteasome inhibitors in multiple myeloma.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2020-03-06)
    Abstract: The BCL-2 antagonist venetoclax is highly effective in multiple myeloma (MM) patients exhibiting the 11;14 translocation, the mechanistic basis of which is unknown. In evaluating cellular energetics and metabolism of t(11;14) and non-t(11;14) MM, we determine that venetoclax-sensitive myeloma has reduced mitochondrial respiration. Consistent with this, low electron transport chain (ETC) Complex I and Complex II activities correlate with venetoclax sensitivity. Inhibition of Complex I, using IACS-010759, an orally bioavailable Complex I inhibitor in clinical trials, as well as succinate ubiquinone reductase (SQR) activity of Complex II, using thenoyltrifluoroacetone (TTFA) or introduction of SDHC R72C mutant, independently sensitize resistant MM to venetoclax. We demonstrate that ETC inhibition increases BCL-2 dependence and the ‘primed’ state via the ATF4-BIM/NOXA axis. Further, SQR activity correlates with venetoclax sensitivity in patient samples irrespective of t(11;14) status. Use of SQR activity in a functional-biomarker informed manner may better select for MM patients responsive to venetoclax therapy.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. 4904-4904
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 4904-4904
    Abstract: Lung cancer continues to be fatal, in part due to the inability to prevent and treat metastases. Highly metastatic cancers exhibit enhanced glucose uptake to sustain proliferation and importantly, tumor invasion. Among the SLC2A family of facilitative glucose transporters, GLUT1 is largely attributed to be responsible for increased glucose uptake of cancer cells. GLUT1 is however responsible for glucose transport across the blood-brain barrier, expressed in many normal cell types and therefore a less desirable therapeutic target. We previously reported that multiple myeloma cells rely on overexpression and constitutive plasma membrane localization of insulin-responsive glucose transporter, GLUT4. In this study we investigated a role for GLUT4 in lung cancer. To interrogate contributions of GLUT1 and GLUT4 in proliferation, invasion and migration we generated H1299 and A549 GLUT 1 or GLUT4 knockdowns. Knockdown (KD) of GLUT4 did not inhibit proliferation but suppressed migration and invasion assessed through scratch and Boyden chamber assays, respectively. On the contrary, knockdown of GLUT1 reduced proliferation of these lines. Treatment of H1299 and A549 with our newly developed GLUT4-selective inhibitors also reduced invasion, phenocopying the effects detected with GLUT4 KD. GLUT4 inhibition also reduced H1299 invasion in a spheroid invasion model. We utilized H1299 cells to isolate highly invasive less proliferative “leader cells” and less invasive but highly proliferative “follower cells”. Interestingly, examination of these two cell types exhibited a differential expression pattern of GLUT1/GLUT4. Leader cells have elevated expression of GLUT4 and decreased GLUT1. On the contrary, follower cells have high GLUT1 and low GLUT4 expression. Leader cells are more sensitive to GLUT4 inhibitors indicating they are more dependent on GLUT4 than follower cells. In addition, leader cells are more sensitive to mitochondrial complex I inhibitors compared to follower cells, suggesting they rely more on oxidative phosphorylation. A differential reliance on glycolysis/OXPHOS was further supported by evaluation of glucose uptake/oxygen consumption. Isotope tracer and bioenergetics analyses further support altered nutrient dependencies of leader and follower cells. Lastly, we found that GLUT4 is expressed in patient lung adenocarcinoma specimens including more aggressive micropapillary lung adenocarcinoma. Examination of collective invasion packs in human adenocarcinoma demonstrated patchy GLUT1 expression suggestive of a subset of more proliferative “follower” cells. These results suggest that in a lung cancer population a subset of more invasive cells are reliant on GLUT4 with reduced GLUT1 expression while more proliferative cells rely on high GLUT1 expression, making GLUT4 a promising candidate for targeting metastasis in lung cancer. Citation Format: Changyong Wei, Abhinav Achreja, Jessica Konen, Gabriel Sica, Melissa Gilbert-Ross, Deepak Nagrath, Adam Marcus, Mala Shanmugam. GLUT4 exhibits a non-canonical role of regulating lung cancer metastasis [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4904. doi:10.1158/1538-7445.AM2017-4904
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...