GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (6)
  • Kinzler, Kenneth W.  (6)
  • English  (6)
  • 1
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 2, No. 1 ( 2012-01-01), p. 41-46
    Abstract: Pancreatic cancers are the fourth most-common cause of cancer-related deaths in the Western world, with & gt;200,000 cases reported in 2010. Although up to 10% of these cases occur in familial patterns, the hereditary basis for predisposition in the vast majority of affected families is unknown. We used next-generation sequencing, including whole-genome and whole-exome analyses, and identified heterozygous, constitutional, ataxia telangiectasia mutated (ATM) gene mutations in 2 kindreds with familial pancreatic cancer. Mutations segregated with disease in both kindreds and tumor analysis demonstrated LOH of the wild-type allele. By using sequence analysis of an additional 166 familial pancreatic cancer probands, we identified 4 additional patients with deleterious mutations in the ATM gene, whereas we identified no deleterious mutations in 190 spouse controls (P = 0.046). When we considered only the mostly severely affected families with 3 or more pancreatic cancer cases, 4 deleterious mutations were found in 87 families (P = 0.009). Our results indicate that inherited ATM mutations play an important role in familial pancreatic cancer predisposition. Significance: The genes responsible for the majority of cases of familial pancreatic ductal adenocarcinoma are unknown. We here identify ATM as a predisposition gene for pancreatic ductal adenocarcinoma. Our results have important implications for the management of patients in affected families and illustrate the power of genome-wide sequencing to identify the basis of familial cancer syndromes. Cancer Discovery; 2(1): 41–6. ©2011 AACR. Read the Commentary on this article by Bakker and de Winter, p. 14 This article is highlighted in the In This Issue feature, p. 1
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 13 ( 2014-07-01), p. 3381-3389
    Abstract: Pancreatic cancer is the deadliest of all solid malignancies. Early detection offers the best hope for a cure, but characteristics of this disease, such as the lack of early clinical symptoms, make the early detection difficult. Recent genetic mapping of the molecular evolution of pancreatic cancer suggests that a large window of opportunity exists for the early detection of pancreatic neoplasia, and developments in cancer genetics offer new, potentially highly specific approaches for screening of curable pancreatic neoplasia. We review the challenges of screening for early pancreatic neoplasia, as well as opportunities presented by incorporating molecular genetics into these efforts. Cancer Res; 74(13); 3381–9. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 69, No. 8 ( 2009-04-15), p. 3681-3688
    Abstract: Cigarette smoking doubles the risk of pancreatic cancer, and smoking accounts for 20% to 25% of pancreatic cancers. The recent sequencing of the pancreatic cancer genome provides an unprecedented opportunity to identify mutational patterns associated with smoking. We previously sequenced & gt;750 million bp DNA from 23,219 transcripts in 24 adenocarcinomas of the pancreas (discovery screen). In this previous study, the 39 genes that were mutated more than once in the discovery screen were sequenced in an additional 90 adenocarcinomas of the pancreas (validation screen). Here, we compared the somatic mutations in the cancers obtained from individuals who ever smoked cigarettes (n = 64) to the somatic mutations in the cancers obtained from individuals who never smoked cigarettes (n = 50). When adjusted for age and gender, analyses of the discovery screen revealed significantly more nonsynonymous mutations in the carcinomas obtained from ever smokers (mean, 53.1 mutations per tumor; SD, 27.9) than in the carcinomas obtained from never smokers (mean, 38.5; SD, 11.1; P = 0.04). The difference between smokers and nonsmokers was not driven by mutations in known driver genes in pancreatic cancer (KRAS, TP53, CDKN2A/p16, and SMAD4), but instead was predominantly observed in genes mutated at lower frequency. No differences were observed in mutations in carcinomas from the head versus tail of the gland. Pancreatic carcinomas from cigarette smokers harbor more mutations than do carcinomas from never smokers. The types and patterns of these mutations provide insight into the mechanisms by which cigarette smoking causes pancreatic cancer. [Cancer Res 2009;69(8):3681–8]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 2628-2628
    Abstract: Pancreatic ductal adenocarcinoma (PDA) affects over 44,000 people in the United States every year and carries a dismal prognosis, with a 5-year survival rate of just 5%. A subset of these patients (5-10%) report a familial history of the disease. The genetic etiology in these familial cases is poorly defined, with known susceptibility genes, such as: BRCA2, PALB2, CDKN2A, BRCA1, PRSS1 and STK11, accounting for only 10-15% of familial pancreatic cancer. In an effort to identify previously unappreciated pancreatic cancer susceptibility genes, we used next generation sequencing technology to evaluate the whole genome and whole exome sequences of 16 (6 families) and 22 individuals (10 families) respectively. All of these families enrolled into one of the familial pancreatic cancer registries participating in the Pancreatic Cancer Genetic Epidemiology (PacGene) Consortium, all had at least three members with PDA, and DNA was available from at least two affected members in each kindred. Using this approach, we identified heterozygous, inactivating, ATM mutations in two kindreds with familial pancreatic cancer (c.8266A & gt;AT; p.K2756X and c.170G & gt;GA; p.W57X). These mutations were previously reported as disease causing variants in patients with ataxia-telangiectasia, an autosomal recessive condition resulting from bi-allelic deleterious mutations of ATM. Interestingly, heterozygotes of deleterious ATM mutations have an increased risk of breast cancer. However, there have been no previous reports of deleterious ATM mutations in the germline of familial PDA patients. In our study, mutations segregated with disease in both kindreds and tumor analysis demonstrated Loss of heterozygosity (LOH) of the wild-type allele. Sequence analysis of the entire ATM gene in an additional 166 familial pancreatic cancer probands indentified four additional patients with deleterious mutations in the ATM gene (c.3214G & gt;GT; p.E1072X, c.6095G & gt;GA; p.R2032K, IVS41-1G & gt;GT and c.3801delG), while no deleterious mutations were identified in 190 spouse controls (p=0.046). When considering only the mostly severely affected families, those with three or more pancreatic cancer cases, four deleterious mutations were found in 87 families (P=0.009). These results indicate that ATM mutations play an important role in familial pancreatic cancer predisposition and have significant implications in the management of affected individuals and the risk assessment of family members. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2628. doi:1538-7445.AM2012-2628
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 15, No. 14 ( 2009-07-15), p. 4674-4679
    Abstract: Purpose: Recently, the majority of protein coding genes were sequenced in a collection of pancreatic cancers, providing an unprecedented opportunity to identify genetic markers of prognosis for patients with adenocarcinoma of the pancreas. Experimental Design: We previously sequenced more than 750 million base pairs of DNA from 23,219 transcripts in a series of 24 adenocarcinomas of the pancreas. In addition, 39 genes that were mutated in more than one of these 24 cancers were sequenced in a separate panel of 90 well-characterized adenocarcinomas of the pancreas. Of these 114 patients, 89 underwent pancreaticoduodenectomy, and the somatic mutations in these cancers were correlated with patient outcome. Results: When adjusted for age, lymph node status, margin status, and tumor size, SMAD4 gene inactivation was significantly associated with shorter overall survival (hazard ratio, 1.92; 95% confidence interval, 1.20-3.05; P = 0.006). Patients with SMAD4 gene inactivation survived a median of 11.5 months, compared with 14.2 months for patients without SMAD4 inactivation. By contrast, mutations in CDKN2A or TP53 or the presence of multiple (≥4) mutations or homozygous deletions among the 39 most frequently mutated genes were not associated with survival. Conclusions: SMAD4 gene inactivation is associated with poorer prognosis in patients with surgically resected adenocarcinoma of the pancreas.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 6, No. 2 ( 2016-02-01), p. 166-175
    Abstract: Pancreatic cancer is projected to become the second leading cause of cancer-related death in the United States by 2020. A familial aggregation of pancreatic cancer has been established, but the cause of this aggregation in most families is unknown. To determine the genetic basis of susceptibility in these families, we sequenced the germline genomes of 638 patients with familial pancreatic cancer and the tumor exomes of 39 familial pancreatic adenocarcinomas. Our analyses support the role of previously identified familial pancreatic cancer susceptibility genes such as BRCA2, CDKN2A, and ATM, and identify novel candidate genes harboring rare, deleterious germline variants for further characterization. We also show how somatic point mutations that occur during hematopoiesis can affect the interpretation of genome-wide studies of hereditary traits. Our observations have important implications for the etiology of pancreatic cancer and for the identification of susceptibility genes in other common cancer types. Significance: The genetic basis of disease susceptibility in the majority of patients with familial pancreatic cancer is unknown. We whole genome sequenced 638 patients with familial pancreatic cancer and demonstrate that the genetic underpinning of inherited pancreatic cancer is highly heterogeneous. This has significant implications for the management of patients with familial pancreatic cancer. Cancer Discov; 6(2); 166–75. ©2015 AACR. This article is highlighted in the In This Issue feature, p. 109
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...