GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • Jiang, Yongying  (2)
  • English  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
  • English  (2)
Years
Subjects(RVK)
  • 1
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 18, No. 12_Supplement ( 2019-12-01), p. C036-C036
    Abstract: Osimertinib, a third generation EGFR inhibitor, is a front-line therapy for EGFR mutated non-small lung cancer (NSCLC). The long-term effectiveness of osimertinib is limited by acquired resistance. Clinically identified resistance mechanisms include EGFR-dependent mechanisms such as mutations on EGFR that preclude drug binding, and EGFR-independent activation of the MAPK pathway, for instance via activation of alternate RTKs. It has also been noted that frequently a tumor from a single patient harbors more than one resistance mechanism, and the plasticity between the multiple resistance mechanisms will restrict the effectiveness of therapies targeting a single node of the oncogenic signaling network. SHP2 (Src homology 2 domain-containing phosphatase) is a phosphatase that mediates the signaling of multiple RTKs and is required for full activation of the MAPK pathway. Here we report IACS-13909 - a specific and potent allosteric inhibitor of SHP2 - suppresses the signaling of RTK/MAPK pathway. IACS-13909 potently impedes the proliferation of tumors with a broad spectrum of RTKs as the oncogenic driver. Importantly, in NSCLC models with acquired resistance to osimertinib, IACS-13909 administered as a single agent or in combination with osimertinib potently reduces tumor cell proliferation in vitro and in vivo. Together, our findings provide preclinical evidence for using a SHP2 inhibitor as a therapeutic strategy in acquired EGFR inhibitor-resistant NSCLC. Currently, a compound that potently inhibits SHP2 has been selected as the clinical development candidate and is undergoing IND-enabling studies with a projected first-in-human target of early 2020. Citation Format: Yuting Sun, Brooke A Meyers, Sarah B Johnson, Angela L Harris, Barbara Czako, Jason B Cross, Paul G Leonard, Faika Mseeh, Maria E Di Francesco, Connor A Parker, Qi Wu, Christopher A Bristow, Jason P Burke, Caroline C Carrillo, Christopher L Carroll, Qing Chang, Ningping Feng, Sonal Gera, Gao Guang, Justin Kwang-Lay Huang, Yongying Jiang, Zhijun Kang, Jeffrey J Kovacs, Xiaoyan Ma, Pijus K Mandal, Timothy McAfoos, Robert A Mullinax, Michael D Peoples, Vandhana Ramamoorthy, Sahil Seth, Erika Suzuki, Christopher Conrad Williams, Simon S Yu, Andy M Zuniga, Giulio F Draetta, Joseph R Marszalek, Timothy P Heffernan, Nancy E Kohl, Philip Jones. Discovery of IACS-13909, an allosteric SHP2 inhibitor that overcomes multiple mechanisms underlying osimertinib resistance [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2019 Oct 26-30; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2019;18(12 Suppl):Abstract nr C036. doi:10.1158/1535-7163.TARG-19-C036
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 21 ( 2020-11-01), p. 4840-4853
    Abstract: Src homology 2 domain-containing phosphatase (SHP2) is a phosphatase that mediates signaling downstream of multiple receptor tyrosine kinases (RTK) and is required for full activation of the MAPK pathway. SHP2 inhibition has demonstrated tumor growth inhibition in RTK-activated cancers in preclinical studies. The long-term effectiveness of tyrosine kinase inhibitors such as the EGFR inhibitor (EGFRi), osimertinib, in non–small cell lung cancer (NSCLC) is limited by acquired resistance. Multiple clinically identified mechanisms underlie resistance to osimertinib, including mutations in EGFR that preclude drug binding as well as EGFR-independent activation of the MAPK pathway through alternate RTK (RTK-bypass). It has also been noted that frequently a tumor from a single patient harbors more than one resistance mechanism, and the plasticity between multiple resistance mechanisms could restrict the effectiveness of therapies targeting a single node of the oncogenic signaling network. Here, we report the discovery of IACS-13909, a specific and potent allosteric inhibitor of SHP2, that suppresses signaling through the MAPK pathway. IACS-13909 potently impeded proliferation of tumors harboring a broad spectrum of activated RTKs as the oncogenic driver. In EGFR-mutant osimertinib-resistant NSCLC models with EGFR-dependent and EGFR-independent resistance mechanisms, IACS-13909, administered as a single agent or in combination with osimertinib, potently suppressed tumor cell proliferation in vitro and caused tumor regression in vivo. Together, our findings provide preclinical evidence for using a SHP2 inhibitor as a therapeutic strategy in acquired EGFRi-resistant NSCLC. Significance: These findings highlight the discovery of IACS-13909 as a potent, selective inhibitor of SHP2 with drug-like properties, and targeting SHP2 may serve as a therapeutic strategy to overcome tumor resistance to osimertinib.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...