GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Journal of Internal Medicine Vol. 292, No. 3 ( 2022-09), p. 390-408
    In: Journal of Internal Medicine, Wiley, Vol. 292, No. 3 ( 2022-09), p. 390-408
    Abstract: DNA methylation is an epigenetic modification that has consistently been shown to be linked with a variety of human traits and diseases. Because DNA methylation is dynamic and potentially reversible in nature and can reflect environmental exposures and predict the onset of diseases, it has piqued interest as a potential disease biomarker. DNA methylation patterns are more stable than transcriptomic or proteomic patterns, and they are relatively easy to measure to track exposure to different environments and risk factors. Importantly, technologies for DNA methylation quantification have become increasingly cost effective—accelerating new research in the field—and have enabled the development of novel DNA methylation biomarkers. Quite a few DNA methylation‐based predictors for a number of traits and diseases already exist. Such predictors show potential for being more accurate than self‐reported or measured phenotypes (such as smoking behavior and body mass index) and may even hold potential for applications in clinics. In this review, we will first discuss the advantages and challenges of DNA methylation biomarkers in general. We will then review the current state and future potential of DNA methylation biomarkers in two human traits that show rather consistent alterations in methylome—obesity and smoking. Lastly, we will briefly speculate about the future prospects of DNA methylation biomarkers, and possible ways to achieve them.
    Type of Medium: Online Resource
    ISSN: 0954-6820 , 1365-2796
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2006883-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Epigenetics, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2021-12)
    Abstract: The aim of this study was to investigate the correspondence of different biological ageing estimates (i.e. epigenetic age) in blood and muscle tissue and their associations with physical activity (PA), physical function and body composition. Two independent cohorts ( N  = 139 and N  = 47) were included, whose age span covered adulthood (23–69 years). Whole blood and m. vastus lateralis samples were collected, and DNA methylation was analysed. Four different DNA methylation age (DNAmAge) estimates were calculated using genome-wide methylation data and publicly available online tools. A novel muscle-specific methylation age was estimated using the R-package ‘MEAT’. PA was measured with questionnaires and accelerometers. Several tests were conducted to estimate cardiorespiratory fitness and muscle strength. Body composition was estimated by dual-energy X-ray absorptiometry. DNAmAge estimates from blood and muscle were highly correlated with chronological age, but different age acceleration estimates were weakly associated with each other. The monozygotic twin within-pair similarity of ageing pace was higher in blood ( r  = 0.617–0.824) than in muscle ( r  = 0.523–0.585). Associations of age acceleration estimates with PA, physical function and body composition were weak in both tissues and mostly explained by smoking and sex. The muscle-specific epigenetic clock MEAT was developed to predict chronological age, which may explain why it did not associate with functional phenotypes. The Horvath’s clock and GrimAge were weakly associated with PA and related phenotypes, suggesting that higher PA would be linked to accelerated biological ageing in muscle. This may, however, be more reflective of the low capacity of epigenetic clock algorithms to measure functional muscle ageing than of actual age acceleration. Based on our results, the investigated epigenetic clocks have rather low value in estimating muscle ageing with respect to the physiological adaptations that typically occur due to ageing or PA. Thus, further development of methods is needed to gain insight into muscle tissue-specific ageing and the underlying biological pathways.
    Type of Medium: Online Resource
    ISSN: 1868-7075 , 1868-7083
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2553921-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journals of Gerontology: Series A, Oxford University Press (OUP), Vol. 77, No. 9 ( 2022-09-01), p. 1898-1906
    Abstract: The sex gap in life expectancy has been narrowing in Finland over the past 4–5 decades; however, on average, women still live longer than men. Epigenetic clocks are markers for biological aging which predict life span. In this study, we examined the mediating role of lifestyle factors on the association between sex and biological aging in younger and older adults. Methods Our sample consists of younger and older twins (21‒42 years, n = 1 477; 50‒76 years, n = 763) including 151 complete younger opposite-sex twin pairs (21‒30 years). Blood-based DNA methylation was used to compute epigenetic age acceleration by 4 epigenetic clocks as a measure of biological aging. Path modeling was used to study whether the association between sex and biological aging is mediated through lifestyle-related factors, that is, education, body mass index, smoking, alcohol use, and physical activity. Results In comparison to women, men were biologically older and, in general, they had unhealthier life habits. The effect of sex on biological aging was partly mediated by body mass index and, in older twins, by smoking. Sex was directly associated with biological aging and the association was stronger in older twins. Conclusions Previously reported sex differences in life span are also evident in biological aging. Declining smoking prevalence among men is a plausible explanation for the narrowing of the difference in life expectancy between the sexes. Data generated by the epigenetic clocks may help in estimating the effects of lifestyle and environmental factors on aging and in predicting aging in future generations.
    Type of Medium: Online Resource
    ISSN: 1079-5006 , 1758-535X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2043927-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2022
    In:  Twin Research and Human Genetics Vol. 25, No. 4-5 ( 2022-10), p. 171-179
    In: Twin Research and Human Genetics, Cambridge University Press (CUP), Vol. 25, No. 4-5 ( 2022-10), p. 171-179
    Abstract: DNA methylation-based age acceleration (DNAmAA) is associated with cancer, with both cancer tissue and blood showing increased DNAmAA. We aimed to investigate whether DNAmAA is associated with cancer risk within twin pairs discordant for cancer, and whether DNAmAA has the potential to serve as a biomarker for such. The study included 47 monozygotic and 48 same-sex-dizygotic cancer-discordant twin pairs from the Finnish Twin Cohort study with blood samples available between 17 and 31 years after the cancer diagnosis. We studied all cancers (95 pairs), then separately breast cancer (24 pairs) and all sites other than breast cancer (71 pairs). DNAmAA was calculated for seven models: Horvath, Horvath intrinsic epigenetic age acceleration, Hannum, Hannum intrinsic epigenetic age acceleration, Hannum extrinsic epigenetic age acceleration, PhenoAge and GrimAge. Within-pair differences in DNAmAA were analyzed by paired t tests and linear regression. Twin pairs sampled before cancer diagnosis did not differ significantly in DNAmAA. However, the within-pair differences in DNAmAA before cancer diagnosis increased significantly the closer the cancer diagnosis was, and this acceleration extended for years after the diagnosis. Pairs sampled after the diagnosis differed for DNAmAA with the Horvath models capturing cancer diagnosis-associated DNAmAA across all three cancer groupings. The results suggest that DNAmAA in blood is associated with cancer diagnosis. This may be due to epigenetic alterations in relation to cancer, its treatment or associated lifestyle changes. Based on the current study, the biomarker potential of DNAmAA in blood appears to be limited.
    Type of Medium: Online Resource
    ISSN: 1832-4274 , 1839-2628
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2184274-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: eLife, eLife Sciences Publications, Ltd, Vol. 11 ( 2022-11-08)
    Abstract: For most animals, events that occur early in life can have a lasting impact on individuals’ health. In humans, adolescence is a particularly vulnerable time when rapid growth and development collide with growing independence and experimentation. An unhealthy lifestyle during this period of rapid cell growth can contribute to later health problems like heart disease, lung disease, and premature death. This is due partly to accelerated biological aging, where the body deteriorates faster than what would be expected for an individual’s chronological age. One way to track the effects of lifestyle on biological aging is by measuring epigenetic changes. Epigenetic changes consist on adding or removing chemical ‘tags’ on genes. These tags can switch the genes on or off without changing their sequences. Scientists can measure certain epigenetic changes by measuring the levels of methylated DNA – DNA with a chemical ‘tag’ known as a methyl group – in blood samples. Several algorithms – known as ‘epigenetic clocks’ – are available that estimate how fast an individual is aging biologically based on DNA methylation. Kankaanpää et al. show that unhealthy lifestyles during adolescence may lead to accelerated aging in early adulthood. For their analysis, Kankaanpää et al. used data on the levels of DNA methylation in blood samples from 824 twins between 21 and 25 years old. The twins were participants in the FinnTwin12 study and had completed a survey about their lifestyles at ages 12, 14, and 17. Kankaanpää et al. classified individuals into five groups depending on their lifestyles. The first three groups, which included most of the twins, contained individuals that led relatively healthy lives. The fourth group contained individuals with a higher body mass index based on their height and weight. Finally, the last group included individuals with unhealthy lifestyles who binge drank, smoked and did not exercise. After estimating the biological ages for all of the participants, Kankaanpää et al. found that both the individuals with higher body mass indices and those in the group with unhealthy lifestyles aged faster than those who reported healthier lifestyles. However, the results varied depending on which epigenetic clock Kankaanpää et al. used to measure biological aging: clocks that had been developed earlier showed fewer differences in aging between groups; while newer clocks consistently found that individuals in the higher body mass index and unhealthy groups were older. Kankaanpää et al. also showed that shared genetic factors explained both unhealthy lifestyles and accelerated biological aging. The experiments performed by Kankaanpää et al. provide new insights into the vital role of an individual’s genetics in unhealthy lifestyles and cellular aging. These insights might help scientists identify at risk individuals early in life and try to prevent accelerated aging.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2022
    detail.hit.zdb_id: 2687154-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Epigenomics, Future Medicine Ltd, Vol. 14, No. 18 ( 2022-09), p. 1105-1124
    Abstract: Tweetable abstract Methylation status of a polymorphically imprinted gene, VTRNA2-1/ nc886, is stable in human populations (48 cohorts, n  〉  30,000) and in somatic tissues, except in cerebellum and skeletal muscle. Twin data suggest it may already be established in the oocyte.
    Type of Medium: Online Resource
    ISSN: 1750-1911 , 1750-192X
    Language: English
    Publisher: Future Medicine Ltd
    Publication Date: 2022
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 9, No. 2 ( 2023-01-11)
    Abstract: Nicotinamide riboside is a potent modifier of mitochondrial metabolism, satellite cell differentiation and gut microbiota.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...