GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • Haradhvala, Nicholas J.  (2)
  • English  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
  • English  (2)
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. LB-280-LB-280
    Abstract: Microsatellites (MSs) are tracts of variable-length repeats of short DNA motifs that are abundant in the human genome and exhibit high rates of mutations in the form of insertions or deletions of the repeated motif (MS indels). Despite their prevalence, the contribution of somatic MS indels to cancer is largely unexplored due to difficulties in detecting them and assessing their significance. Here, we present a comprehensive analysis of MS indels across 20 tumor types. We characterize the overall MS indel landscape and detect genes with candidate driver MS indel events. We present two novel tools: MSMuTect for accurate detection of somatic MS indels and MSMutSig for identifying candidate cancer genes containing events at higher frequency than expected by chance. We observe high variability of the frequency of MS indels across tumors and demonstrate that the number and pattern of MS indels can accurately distinguish microsatellite stable (MSS) tumors from tumors with microsatellite instability (MSI). Applying MSMutSig across 6,788 tumors from 20 different tumor types identified 7 genes with significant MS indel hotspots: ACVR2A, RNF43, DOCK3, MSH3, ESRP1, PRDM2 and JAK1. In the four genes that have been previously implicated in cancer (ACVR2A, RNF43, JAK1 and MSH3), we identified previously unreported MS indels events. Three of the genes with significant loci - DOCK3, PRDM2 and ESRP1- had not been previously listed as cancer genes. MS indels in DOCK3, a negative regulator of the WNT pathway, were mutually exclusive with mutations in CTNNB1. MS indels in ESRP1, an RNA processing gene, correlated with alternative splicing of FGFR2, an event associated with the epithelial-to-mesenchymal transition. Overall, our comprehensive analysis of somatic MS indels across cancer highlights their importance, particularly in MSI tumors, significantly contributes to the ongoing global efforts to detect cancer genes, and may improve classification of patients into clinically-relevant subgroups. Citation Format: Yosef E. Maruvka, Kent W. Mouw, Rosa Karlic, Rasanna Parasuraman, Atanas Kamburov, Paz Polak, Nicholas J. Haradhvala, Julian M. Hess, Esther Rheinbay, Yehuda Brody, Lior Z. Braunstein, Alan D’Andrea, Michael S. Lawrence, Adam Bass, Andre Bernards, Franziska Michor, Gad Getz. The landscape of somatic microsatellite indels across cancer: detection and identification of driver events [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr LB-280. doi:10.1158/1538-7445.AM2017-LB-280
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 2727-2727
    Abstract: Despite increasing knowledge of tumorigenesis, the identity of the cancer cell-of-origin, i.e. the normal cell type that acquired the cancer-initiating event, remains largely unknown. Our approach of identifying the cell-of-origin is based on two observations: (1) the chromatin structure is cell-specific; and (2) the density of somatic mutations along the genome is associated with the regional profile of chromatin modifications. We have previously developed a method that quantifies the ability to predict the mutational distribution along the cancer genome from the profile of epigenetic modifications in different normal cell types. Here we present the largest application of our method using 2,550 whole genomes representing 32 distinct cancer types. To identify the cell-of-origin, we determined the correlation between the observed density of mutations along the genome and the predicted values based on chromatin modifications from 104 different normal tissue types. The normal cell type that showed the strongest correlation with a specific cancer mutational landscape was the candidate cell-of-origin. We found that in almost all cancer types the cell-of-origin can be characterized solely from DNA sequences. Interestingly, we found that the fallopian tube was the best match for high-grade serous ovarian cancer, providing independent evidence that this is the cancer’s site of origin. For breast cancer we found that the four distinct subtypes best-matched cells from the luminal cell lineage: basal-like breast cancer likely originates from luminal progenitors, whereas all other subtypes from luminal mature cells. This association holds true even when accounting for different alterations in the homologous recombination repair pathway, suggesting that subtypes are more determined by the cell-of-origin than the specific DNA repair defect. In addition, we found that we could identify the cell-of-origin using metastatic samples – a finding that may help in difficult clinical diagnoses. Moreover, we demonstrate that cancer drivers, both germline risk alleles and somatically mutated drivers, reside in active chromatin regions in the respective cell-of-origin. Taken together, our findings indicate that many of the somatic mutations accumulated while the cells maintained a chromatin structure similar to the cell-of-origin (likely occurring prior to transformation). Therefore, this historical record, captured in the DNA, can be used to identify, the often elusive, cancer cell-of-origin. Our approach can ultimately help better understand the potential of particular normal cell types to transform and initiate cancer, as well as the association of the cell-of-origin with tumor subtypes and sensitivity to treatment. Citation Format: Kirsten Kubler, Rosa Karlic, Nicholas J. Haradhvala, Kyungsik Ha, Jaegil Kim, Maja Kuzman, Wei Jiao, Sitanshu Gakkhar, Kent W. Mouw, Lior Z. Braunstein, Olivier Elemento, Andrew V. Biankin, Ilse Rooman, Mendy Miller, Christopher D. Nogiec, Edward Curry, Mari Mino-Kenudson, Leif W. Ellisen, Robert Brown, Alexander Gusev, Cristian Tomasetti, Hong-Gee Kim, Hwajin Lee, Kristian Vlahovicek, Charles Sawyers, Katherine A. Hoadley, Edwin Cuppen, Amnon Koren, Peter F. Arndt, David N. Louis, Lincoln Stein, William D. Foulkes, Paz Polak, Gad Getz. The premalignant state captured in the landscape of somatic mutations can reveal the cancer cell-of-origin [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2727.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...