GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Geoscience, Springer Science and Business Media LLC, Vol. 15, No. 9 ( 2022-09), p. 726-734
    Type of Medium: Online Resource
    ISSN: 1752-0894 , 1752-0908
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2396648-8
    detail.hit.zdb_id: 2405323-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Climate of the Past, Copernicus GmbH, Vol. 16, No. 6 ( 2020-11-04), p. 2095-2123
    Abstract: Abstract. The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.7 and 5.2 ∘C relative to the pre-industrial era with a multi-model mean value of 3.2 ∘C. Annual mean total precipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 ∘C over land and 2.8 ∘C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60∘ N and 60∘ S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8 ∘C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 6 ( 2021-12-01), p. 2427-2450
    Abstract: Abstract. The mid-Pliocene warm period (3.264–3.025 Ma) is the most recent geological period during which atmospheric CO2 levels were similar to recent historical values (∼400 ppm). Several proxy reconstructions for the mid-Pliocene show highly reduced zonal sea surface temperature (SST) gradients in the tropical Pacific Ocean, indicating an El Niño-like mean state. However, past modelling studies do not show these highly reduced gradients. Efforts to understand mid-Pliocene climate dynamics have led to the Pliocene Model Intercomparison Project (PlioMIP). Results from the first phase (PlioMIP1) showed clear El Niño variability (albeit significantly reduced) and did not show the greatly reduced time-mean zonal SST gradient suggested by some of the proxies. In this work, we study El Niño–Southern Oscillation (ENSO) variability in the PlioMIP2 ensemble, which consists of additional global coupled climate models and updated boundary conditions compared to PlioMIP1. We quantify ENSO amplitude, period, spatial structure and “flavour”, as well as the tropical Pacific annual mean state in mid-Pliocene and pre-industrial simulations. Results show a reduced ENSO amplitude in the model-ensemble mean (−24 %) with respect to the pre-industrial, with 15 out of 17 individual models showing such a reduction. Furthermore, the spectral power of this variability considerably decreases in the 3–4-year band. The spatial structure of the dominant empirical orthogonal function shows no particular change in the patterns of tropical Pacific variability in the model-ensemble mean, compared to the pre-industrial. Although the time-mean zonal SST gradient in the equatorial Pacific decreases for 14 out of 17 models (0.2 ∘C reduction in the ensemble mean), there does not seem to be a correlation with the decrease in ENSO amplitude. The models showing the most “El Niño-like” mean state changes show a similar ENSO amplitude to that in the pre-industrial reference, while models showing more “La Niña-like” mean state changes generally show a large reduction in ENSO variability. The PlioMIP2 results show a reasonable agreement with both time-mean proxies indicating a reduced zonal SST gradient and reconstructions indicating a reduced, or similar, ENSO variability.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Climate of the Past, Copernicus GmbH, Vol. 19, No. 3 ( 2023-03-31), p. 747-764
    Abstract: Abstract. Understanding the dominant climate forcings in the Pliocene is crucial to assessing the usefulness of the Pliocene as an analogue for our warmer future. Here, we implement a novel yet simple linear factorisation method to assess the relative influence of CO2 forcing in seven models of the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble. Outputs are termed “FCO2” and show the fraction of Pliocene climate change driven by CO2. The accuracy of the FCO2 method is first assessed through comparison to an energy balance analysis previously used to assess drivers of surface air temperature in the PlioMIP1 ensemble. After this assessment, the FCO2 method is applied to achieve an understanding of the drivers of Pliocene sea surface temperature and precipitation for the first time. CO2 is found to be the most important forcing in the ensemble for Pliocene surface air temperature (global mean FCO2=0.56), sea surface temperature (global mean FCO2=0.56), and precipitation (global mean FCO2=0.51). The range between individual models is found to be consistent between these three climate variables, and the models generally show good agreement on the sign of the most important forcing. Our results provide the most spatially complete view of the drivers of Pliocene climate to date and have implications for both data–model comparison and the use of the Pliocene as an analogue for the future. That CO2 is found to be the most important forcing reinforces the Pliocene as a good palaeoclimate analogue, but the significant effect of non-CO2 forcing at a regional scale (e.g. orography and ice sheet forcing at high latitudes) reminds us that it is not perfect, and these additional influencing factors must not be overlooked. This comparison is further complicated when considering the Pliocene as a state in quasi-equilibrium with CO2 forcing compared to the transient warming being experienced at present.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Climate of the Past, Copernicus GmbH, Vol. 16, No. 6 ( 2020-11-23), p. 2325-2341
    Abstract: Abstract. Palaeoclimate simulations improve our understanding of the climate, inform us about the performance of climate models in a different climate scenario, and help to identify robust features of the climate system. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), derived from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The PlioMIP2 ensemble simulates Arctic (60–90∘ N) annual mean surface air temperature (SAT) increases of 3.7 to 11.6 ∘C compared to the pre-industrial period, with a multi-model mean (MMM) increase of 7.2 ∘C. The Arctic warming amplification ratio relative to global SAT anomalies in the ensemble ranges from 1.8 to 3.1 (MMM is 2.3). Sea ice extent anomalies range from −3.0 to -10.4×106 km2, with a MMM anomaly of -5.6×106 km2, which constitutes a decrease of 53 % compared to the pre-industrial period. The majority (11 out of 16) of models simulate summer sea-ice-free conditions (≤1×106 km2) in their mPWP simulation. The ensemble tends to underestimate SAT in the Arctic when compared to available reconstructions, although the degree of underestimation varies strongly between the simulations. The simulations with the highest Arctic SAT anomalies tend to match the proxy dataset in its current form better. The ensemble shows some agreement with reconstructions of sea ice, particularly with regard to seasonal sea ice. Large uncertainties limit the confidence that can be placed in the findings and the compatibility of the different proxy datasets. We show that while reducing uncertainties in the reconstructions could decrease the SAT data–model discord substantially, further improvements are likely to be found in enhanced boundary conditions or model physics. Lastly, we compare the Arctic warming in the mPWP to projections of future Arctic warming and find that the PlioMIP2 ensemble simulates greater Arctic amplification than CMIP5 future climate simulations and an increase instead of a decrease in Atlantic Meridional Overturning Circulation (AMOC) strength compared to pre-industrial period. The results highlight the importance of slow feedbacks in equilibrium climate simulations, and that caution must be taken when using simulations of the mPWP as an analogue for future climate change.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Geophysical Research Letters Vol. 46, No. 15 ( 2019-08-16), p. 9136-9144
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 46, No. 15 ( 2019-08-16), p. 9136-9144
    Abstract: Pliocene SSTs calculated from the alkenone proxy do not support a “permanent El Niño” Pliocene model simulations can reproduce proxy‐inferred SST patterns and gradients The pattern of Pliocene warmth supports a weakening of Walker circulation under higher CO 2
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Climate of the Past, Copernicus GmbH, Vol. 16, No. 4 ( 2020-08-27), p. 1599-1615
    Abstract: Abstract. A range of future climate scenarios are projected for high atmospheric CO2 concentrations, given uncertainties over future human actions as well as potential environmental and climatic feedbacks. The geological record offers an opportunity to understand climate system response to a range of forcings and feedbacks which operate over multiple temporal and spatial scales. Here, we examine a single interglacial during the late Pliocene (KM5c, ca. 3.205±0.01 Ma) when atmospheric CO2 exceeded pre-industrial concentrations, but were similar to today and to the lowest emission scenarios for this century. As orbital forcing and continental configurations were almost identical to today, we are able to focus on equilibrium climate system response to modern and near-future CO2. Using proxy data from 32 sites, we demonstrate that global mean sea-surface temperatures were warmer than pre-industrial values, by ∼2.3 ∘C for the combined proxy data (foraminifera Mg∕Ca and alkenones), or by ∼3.2–3.4 ∘C (alkenones only). Compared to the pre-industrial period, reduced meridional gradients and enhanced warming in the North Atlantic are consistently reconstructed. There is broad agreement between data and models at the global scale, with regional differences reflecting ocean circulation and/or proxy signals. An uneven distribution of proxy data in time and space does, however, add uncertainty to our anomaly calculations. The reconstructed global mean sea-surface temperature anomaly for KM5c is warmer than all but three of the PlioMIP2 model outputs, and the reconstructed North Atlantic data tend to align with the warmest KM5c model values. Our results demonstrate that even under low-CO2 emission scenarios, surface ocean warming may be expected to exceed model projections and will be accentuated in the higher latitudes.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 4 ( 2021-08-27), p. 1777-1794
    Abstract: Abstract. The mid-Pliocene warm period (mPWP; ∼3.2 million years ago) is seen as the most recent time period characterized by a warm climate state, with similar to modern geography and ∼400 ppmv atmospheric CO2 concentration, and is therefore often considered an interesting analogue for near-future climate projections. Paleoenvironmental reconstructions indicate higher surface temperatures, decreasing tropical deserts, and a more humid climate in West Africa characterized by a strengthened West African Monsoon (WAM). Using model results from the second phase of the Pliocene Modelling Intercomparison Project (PlioMIP2) ensemble, we analyse changes of the WAM rainfall during the mPWP by comparing them with the control simulations for the pre-industrial period. The ensemble shows a robust increase in the summer rainfall over West Africa and the Sahara region, with an average increase of 2.5 mm/d, contrasted by a rainfall decrease over the equatorial Atlantic. An anomalous warming of the Sahara and deepening of the Saharan Heat Low, seen in 〉90 % of the models, leads to a strengthening of the WAM and an increased monsoonal flow into the continent. A similar warming of the Sahara is seen in future projections using both phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Though previous studies of future projections indicate a west–east drying–wetting contrast over the Sahel, PlioMIP2 simulations indicate a uniform rainfall increase in that region in warm climates characterized by increasing greenhouse gas forcing. We note that this effect will further depend on the long-term response of the vegetation to the CO2 forcing.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-03-14)
    Abstract: Despite tectonic conditions and atmospheric CO 2 levels ( pCO 2 ) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO 2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO 2 . Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO 2 forcing.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 6 ( 2021-12-08), p. 2537-2558
    Abstract: Abstract. The mid-Pliocene (∼3 Ma) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures, and it is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (due to the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. Note that the dynamic effect plays a more important role than the thermodynamic effect in regional precipitation minus evaporation (PmE) changes (i.e., northward ITCZ shift and wetter northern Indian Ocean). The thermodynamic effect is offset to some extent by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth's energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1∘ northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...