GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (1)
  • Boisseau, Renaud  (1)
  • English  (1)
Material
Publisher
  • Wiley  (1)
Language
  • English  (1)
Years
  • 1
    In: Rapid Communications in Mass Spectrometry, Wiley, Vol. 29, No. 5 ( 2015-03-15), p. 456-460
    Abstract: Electrochemistry (EC) coupled to mass spectrometry (MS) has been used to study different phase‐I reactions. Despite of the versatility of EC/MS, the effect of the nature of the supporting electrolyte on the formation of oxidation products has seldom been discussed during EC/MS experiments. Here, we present a comparison of two different supporting electrolytes and their effect on the identification of unstable intermediate oxidation species is discussed. Methods The oxidation of acebutolol was performed with a coulometric cell in the presence of two supporting electrolytes namely ammonium acetate and lithium acetate. Ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC/QTOFMS) using a binary gradient (water/acetonitrile) with positive electrospray ionization was used to identify the oxidation products in the presence and absence of glutathione. Chemical structure elucidations of the oxidation products were performed by high‐resolution mass spectrometry (HRMS) and were also supported by nuclear magnetic resonance (NMR) measurements. Results From the electrochemical study and HRMS measurements, we demonstrate that the quinoneimide species resulting from the oxidative hydrolyses of acebutolol gives a benzimidazole ring product in the presence of ammonium acetate. Through the example of the oxidation of acebutolol, a correlation between the supporting electrolyte nature and oxidation product formation was established. The obtained results were supported by quantum mechanical calculations. Conclusions We present here evidence of the side reactions induced by the presence of ammonia as supporting electrolyte during EC/MS measurements. Acebutolol was used as a model to postulate an uncommon and unexpected side reaction leading to benzimidazole ring formation. The findings may help to understand the identification of the intermediate species in the oxidative degradation process. Copyright © 2015 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 0951-4198 , 1097-0231
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2002158-6
    detail.hit.zdb_id: 58731-X
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...