GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Bahr, Brigham L.  (2)
  • Englisch  (2)
  • 2010-2014  (2)
Materialart
Sprache
  • Englisch  (2)
Erscheinungszeitraum
  • 2010-2014  (2)
Jahr
Fachgebiete(RVK)
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 212-212
    Kurzfassung: Anemia of chronic disease (ACD) is an inflammatory cytokine driven disease characterized by hypoferremia despite adequate iron stores. This is largely due to hepcidin, a master regulator of iron homeostasis, which blocks enterocytes from absorbing iron and preventing iron release from macrophages by binding to ferroportin. It is known that bone morphogenetic proteins (BMP) up-regulate hepcidin by activating the SMAD signaling pathway through the activin-like kinase receptor 2 (ALK2). Therefore, ALK2 has emerged as a potential therapeutic target to modulate hepcidin levels and treat ACD. We have developed a novel series of small molecule ALK2 inhibitors with promising activity in preclinical models of ACD. Using well-established cell-based and animal models of hepcidin signaling and anemia, we optimized and validated the activity of the most promising preclinical lead candidates. These compounds demonstrate significant activity in downregulating hepcidin expression in BMP-induced cell culture studies at concentrations of 100 nM or lower. Importantly, this hepcidin lowering activity was observed at concentrations that exhibited no cytotoxicity suggesting the compounds have a clean selectivity profile. The compounds also demonstrated remarkable activity in animal models of anemia, including an acute model induced by the administration of turpentine oil and a more chronic model induced by tumor formation and growth. Treatment with the lead candidates completely reversed the induction of hepcidin expression in these models and also decreased the symptoms of anemia as measured by serum iron and red blood cell levels. From these data, we have nominated a candidate to advance into IND-enabling studies that has favorable drug-like properties. We anticipate a clinical development strategy that focuses on anemia of cancer with subsequent expansion into anemia associated more broadly with other inflammatory and chronic diseases Disclosures Kim: Tolero Pharmaceuticals: Employment. Maughan:Tolero Pharmaceuticals: Employment. Soh:Tolero Pharmaceuticals: Employment. Bearss:Tolero Pharmaceuticals: Employment. Bahr:Tolero Pharmaceuticals: Employment. Bearss:Tolero Pharmaceuticals: Employment. Warner:Tolero Pharmaceuticals: Employment, Equity Ownership, Patents & Royalties.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 8_Supplement ( 2013-04-15), p. 1875-1875
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 1875-1875
    Kurzfassung: Rather than relying on oxidative phosphorylation for the generation of ATP, human tumor cells primarily utilize aerobic glycolysis to metabolize glucose (the Warburg effect). Pyruvate kinase is a metabolic enzyme that converts phosphoenolpyruvate (PEP) to pyruvate, catalyzing the rate-limiting step of glycolysis. The M1 isoform of pyruvate kinase (PKM1) that is the principal isoform in most adult differentiated tissues, while the PKM2 splice variant is the main isoform in embryonic tissues and in all cancer cells. Unlike the M1 splice form (PKM1), which is found in its tetrameric active form in cells, PKM2 is found in cells as an inactive dimer under normal physiological conditions. Tetramerization of PKM2 requires binding of the allosteric activator fructose-1,6-bisphosphate (FBP), an upstream glycolytic intermediate, resulting in a fully active enzyme. Regulation of PKM2 activity in cancer cells may allow glycolytic intermediates to be diverted into other biosynthetic pathways necessary for biomass production. PKM2 expression enhances tumorigenicity of cells while PKM1 expression represses it. This suggests that activators of PKM2 may have anti-tumor properties by forcing PKM2 to act more like PKM1. We have a series of small molecule PKM2 activators that exhibit low nM activation activity in biochemical and cell-based assays. These compounds increase pyruvate kinase activity in cancer cells and lead to an increase in pyruvate and ATP production. Our studies show that PKM2 activators inhibit the growth of lung cancer cell lines in vitro and in vivo and can reverse the metabolic changes induced by oncogenes such as k-Ras and c-Myc in lung cancer cells. The current lead compound was tested in established subcutaneously implanted A549 lung adenocarcinoma xenografts, where we observed a statistically significant 54% decrease in tumor growth, with no observable toxicity. These data suggest that this class of PKM2 activators is effective as tumor cell metabolic regulators with anti-tumor activity for lung cancer and potentially other malignancies. Citation Format: Brigham L. Bahr, Jenny Stevens, Spencer Squire, Christopher Moreno, Lee T. Call, Bret J. Stephens, Alexis Mollard, Steven L. Warner, David J. Bearss. A novel series of metabolic activators of PKM2 alter oncogene-meditated changes in tumor cell metabolism. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 1875. doi:10.1158/1538-7445.AM2013-1875
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2013
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...