GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (24)
  • American Diabetes Association  (24)
  • English  (24)
  • 2005-2009  (24)
Material
  • Online Resource  (24)
Publisher
  • American Diabetes Association  (24)
Language
  • English  (24)
Years
  • 2005-2009  (24)
Year
  • 1
    In: Diabetes, American Diabetes Association, Vol. 55, No. 9 ( 2006-09-01), p. 2541-2548
    Abstract: The gene encoding the transcription factor upstream stimulatory factor (USF)1 influences susceptibility to familial combined hyperlipidemia (FCHL) and triglyceride levels. Phenotypic overlap between FCHL and type 2 diabetes makes USF1 a compelling positional candidate for the widely replicated type 2 diabetes linkage signal on chromosome 1q. We typed 22 variants in the F11R/USF1 region (1 per 3 kb), including those previously implicated in FCHL-susceptibility (or proxies thereof) in 3,726 samples preferentially enriched for 1q linkage. We also examined glucose- and lipid-related continuous traits in an overlapping set of 1,215 subjects of European descent. There was no convincing evidence for association with type 2 diabetes in any of seven case-control comparisons, individually or combined. Family-based association analyses in 832 Pima subjects were similarly negative. At rs3737787 (the variant most strongly associated with FCHL), the combined odds ratio, per copy of the rarer A-allele, was 1.10 (95% CI 0.97–1.24, P = 0.13). In 124 Utah subjects, rs3737787 was significantly associated (P = 0.002) with triglyceride levels, but direction of this association was opposite to previous reports, and there was no corroboration in three other samples. These data exclude USF1 as a major contributor to type 2 diabetes susceptibility and the basis for the chromosome 1q linkage. They reveal only limited evidence for replication of USF1 effects on continuous metabolic traits.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2006
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Diabetes, American Diabetes Association, Vol. 56, No. 3 ( 2007-03-01), p. 685-693
    Abstract: An important question in human genetics is the extent to which genes causing monogenic forms of disease harbor common variants that may contribute to the more typical form of that disease. We aimed to comprehensively evaluate the extent to which common variation in the six known maturity-onset diabetes of the young (MODY) genes, which cause a monogenic form of type 2 diabetes, is associated with type 2 diabetes. Specifically, we determined patterns of common sequence variation in the genes encoding Gck, Ipf1, Tcf2, and NeuroD1 (MODY2 and MODY4–MODY6, respectively), selected a comprehensive set of 107 tag single nucleotide polymorphisms (SNPs) that captured common variation, and genotyped each in 4,206 patients and control subjects from Sweden, Finland, and Canada (including family-based studies and unrelated case-control subjects). All SNPs with a nominal P value & lt;0.1 for association to type 2 diabetes in this initial screen were then genotyped in an additional 4,470 subjects from North America and Poland. Of 30 nominally significant SNPs from the initial sample, 8 achieved consistent results in the replication sample. We found the strongest effect at rs757210 in intron 2 of TCF2, with corrected P values & lt;0.01 for an odds ratio (OR) of 1.13. This association was observed again in an independent sample of 5,891 unrelated case and control subjects and 500 families from the U.K., for an overall OR of 1.12 and a P value & lt;10−6 in & gt;15,000 samples. We combined these results with our previous studies on HNF4α and TCF1 and explicitly tested for gene-gene interactions among these variants and with several known type 2 diabetes susceptibility loci, and we found no genetic interactions between these six genes. We conclude that although rare variants in these six genes explain most cases of MODY, common variants in these same genes contribute very modestly, if at all, to the common form of type 2 diabetes.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2007
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Diabetes, American Diabetes Association, Vol. 55, No. 6 ( 2006-06-01), p. 1890-1894
    Abstract: The etiopathological relationship between latent autoimmune diabetes in adults (LADA) and classical type 1 (insulin dependent) diabetes remains unclear. Variation at the insulin gene variable number of tandem repeats (VNTR) minisatellite influences susceptibility to type 1 diabetes, but studies in LADA have been small and inconsistent. We examined the role of insulin gene variation (using flanking variants as surrogates for VNTR subtypes) in the largest case-control study of LADA to date (400 case and 332 control subjects). Highly significant associations were identified with disease, with dominant protective effects of the T allele at −23HphI (odds ratio [OR] 0.42 [95% CI 0.31–0.58] , P = 2.4 × 10−8), A allele at +1,404Fnu4HI (0.50 [0.36–0.70], P = 3.2 × 10−5), and C allele at +3,580MspI (0.55 [0.35–0.85] , P = 0.0046). As with type 1 diabetes, the −23HphI variant (a surrogate for the subdivision of VNTR into class I and III alleles) most clearly defined susceptibility in LADA. However, there was no association with age at diagnosis or requirement for insulin therapy 6 years postdiagnosis. This study establishes that variation within the insulin gene region does influence susceptibility to LADA, with the direction and magnitude of effect indistinguishable from that previously reported for type 1 diabetes. In conclusion, differences in VNTR-encoded susceptibility do not explain the differences in clinical presentation that distinguish classical type 1 diabetes and LADA.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2006
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Diabetes, American Diabetes Association, Vol. 55, No. 11 ( 2006-11-01), p. 3175-3179
    Abstract: Ectoenzyme nucleotide pyrophosphate phosphodiesterase 1 (ENPP1) is an inhibitor of insulin-induced activation of the insulin receptor. There is strong evidence from several previous studies that a common coding variant of ENPP1 (K121Q) and a three-marker haplotype (Q121, IVS20delT-11, and G+1044TGA) are associated with type 2 diabetes and obesity. We examined the impact of ENPP1 variation on type 2 diabetes and obesity in a large U.K. genetic association study. We genotyped the three previously associated polymorphisms in 2,363 type 2 diabetic case and 4,045 control subjects, as well as 1,681 subjects from 529 type 2 diabetic families. We used the same subjects for morbid and moderate obesity association studies. For type 2 diabetes, moderate and morbid obesity, and for both the Q121 and three-marker haplotype, our results exclude with & gt;95% confidence the effect sizes from previous studies (Q121 allele: odds ratio 1.02 [95% CI 0.93–1.12], P = 0.61; 1.00 [0.85–1.18] , P = 0.99; and 0.92 [0.70–1.20], P = 0.41; three-marker haplotype: 1.10 [0.96–1.26] , P = 0.17; 0.97 [0.77–1.23], P = 0.81; and 0.86 [0.57–1.30] , P = 0.46 for type 2 diabetes, moderate, and morbid obesity, respectively). A K121Q type 2 diabetes meta-analysis of all previously published studies remained significant after the inclusion of this study (1.25 [1.10–1.43], P = 0.0007), although there was some evidence of publication bias. In conclusion, we find no evidence that previously associated variants of ENPP1 are associated with type 2 diabetes or obesity in the U.K. population.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2006
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Diabetes, American Diabetes Association, Vol. 58, No. 2 ( 2009-02-01), p. 505-510
    Abstract: OBJECTIVE—This study examined how differences in the BMI distribution of type 2 diabetic case subjects affected genome-wide patterns of type 2 diabetes association and considered the implications for the etiological heterogeneity of type 2 diabetes. RESEARCH DESIGN AND METHODS—We reanalyzed data from the Wellcome Trust Case Control Consortium genome-wide association scan (1,924 case subjects, 2,938 control subjects: 393,453 single-nucleotide polymorphisms [SNPs]) after stratifying case subjects (into “obese” and “nonobese”) according to median BMI (30.2 kg/m2). Replication of signals in which alternative case-ascertainment strategies generated marked effect size heterogeneity in type 2 diabetes association signal was sought in additional samples. RESULTS—In the “obese-type 2 diabetes” scan, FTO variants had the strongest type 2 diabetes effect (rs8050136: relative risk [RR] 1.49 [95% CI 1.34–1.66] , P = 1.3 × 10−13), with only weak evidence for TCF7L2 (rs7901695 RR 1.21 [1.09–1.35], P = 0.001). This situation was reversed in the “nonobese” scan, with FTO association undetectable (RR 1.07 [0.97–1.19] , P = 0.19) and TCF7L2 predominant (RR 1.53 [1.37–1.71], P = 1.3 × 10−14). These patterns, confirmed by replication, generated strong combined evidence for between-stratum effect size heterogeneity (FTO: PDIFF = 1.4 × 10−7; TCF7L2: PDIFF = 4.0 × 10−6). Other signals displaying evidence of effect size heterogeneity in the genome-wide analyses (on chromosomes 3, 12, 15, and 18) did not replicate. Analysis of the current list of type 2 diabetes susceptibility variants revealed nominal evidence for effect size heterogeneity for the SLC30A8 locus alone (RRobese 1.08 [1.01–1.15] ; RRnonobese 1.18 [1.10–1.27]: PDIFF = 0.04). CONCLUSIONS—This study demonstrates the impact of differences in case ascertainment on the power to detect and replicate genetic associations in genome-wide association studies. These data reinforce the notion that there is substantial etiological heterogeneity within type 2 diabetes.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2009
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Diabetes, American Diabetes Association, Vol. 56, No. 3 ( 2007-03-01), p. 879-883
    Abstract: Mutations in the LMNA gene (encoding lamin A/C) underlie familial partial lipodystrophy, a syndrome of monogenic insulin resistance and diabetes. LMNA maps to the well-replicated diabetes-linkage region on chromosome 1q, and there are reported associations between LMNA single nucleotide polymorphisms (SNPs) (particularly rs4641; H566H) and metabolic syndrome components. We examined the relationship between LMNA variation and type 2 diabetes (using six tag SNPs capturing & gt;90% of common variation) in several large datasets. Analysis of 2,490 U.K. diabetic case and 2,556 control subjects revealed no significant associations at either genotype or haplotype level: the minor allele at rs4641 was no more frequent in case subjects (allelic odds ratio [OR] 1.07 [95% CI 0.98–1.17] , P = 0.15). In 390 U.K. trios, family-based association analyses revealed nominally significant overtransmission of the major allele at rs12063564 (P = 0.01), which was not corroborated in other samples. Finally, genotypes for 2,817 additional subjects from the International 1q Consortium revealed no consistent case-control or family-based associations with LMNA variants. Across all our data, the OR for the rs4641 minor allele approached but did not attain significance (1.07 [0.99–1.15], P = 0.08). Our data do not therefore support a major effect of LMNA variation on diabetes risk. However, in a meta-analysis including other available data, there is evidence that rs4641 has a modest effect on diabetes susceptibility (1.10 [1.04–1.16] , P = 0.001).
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2007
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Diabetes, American Diabetes Association, Vol. 55, No. 8 ( 2006-08-01), p. 2272-2276
    Abstract: Recent evidence supports the strong overlap between genes implicated in monogenic diabetes and susceptibility to type 2 diabetes. Transient neonatal diabetes mellitus (TNDM) is a rare disorder associated with overexpression of genes at a paternally expressed imprinted locus on chromosome 6q24. There are two overlapping genes in this region: the transcription factor zinc finger protein associated with cell cycle control and apoptosis (ZAC also known as PLAGL1) and HYMA1, which encodes an untranslated mRNA. Several type 2 diabetes linkage studies have reported linkage to chromosome 6q22–25. We hypothesized that common genetic variation at this TNDM region influences type 2 diabetes susceptibility. In addition to the coding regions, we used comparative genomic analysis to identify conserved noncoding regions, which were resequenced for single nucleotide polymorphism (SNP) discovery in 47 individuals. Twenty-six SNPs were identified. Fifteen tag SNPs (tSNPs) were successfully genotyped in a large case-control (n = 3,594) and family-based (n = 1,654) study. We did not find any evidence of association or overtransmission of any tSNP to affected offspring or of a parent-of-origin effect. Using a study sufficiently powered to detect odds ratios of & lt;1.2, we conclude that common variation in the TNDM region does not play an important role in the genetic susceptibility to type 2 diabetes.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2006
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Diabetes, American Diabetes Association, Vol. 55, No. 1 ( 2006-01-01), p. 128-135
    Abstract: The insulin-degrading enzyme is responsible for the intracellular proteolysis of insulin. Its gene IDE is located on chromosome 10, in an area with suggestive linkage to type 2 diabetes and related phenotypes. Due to the impact of genetic variants of this gene in rodents and the function of its protein product, it has been proposed as a candidate gene for type 2 diabetes. Various groups have explored the role of the common genetic variation of IDE on insulin resistance and reported associations of various single nucleotide polymorphisms (SNPs) and haplotypes on both type 2 diabetes and glycemic traits. We sought to characterize the haplotype structure of IDE in detail and replicate the association of common variants with type 2 diabetes, fasting insulin, fasting glucose, and insulin resistance. We assessed linkage disequilibrium, selected single-marker and multimarker tags, and genotyped these markers in several case-control and family-based samples totalling 4,206 Caucasian individuals. We observed no statistically significant evidence of association between single-marker or multimarker tests in IDE and type 2 diabetes. Nominally significant differences in quantitative traits are consistent with statistical noise. We conclude that common genetic variation at IDE is unlikely to confer clinically significant risk of type 2 diabetes in Caucasians.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2006
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Diabetes, American Diabetes Association, Vol. 55, No. 6 ( 2006-06-01), p. 1884-1889
    Abstract: Obesity is a major health problem, and many family-based studies have suggested that it has a strong genetic basis. We performed a genome-wide quantitative trait linkage scan for loci influencing BMI in 573 pedigrees from the U.K. We identified genome-wide significant linkage (logarithm of odds = 3.74, between D10S208 and D10S196, genome-wide P = 0.0186) on chromosome 10p. The size of our study population and the statistical significance of our findings provide substantial contributions to the body of evidence for a locus on chromosome 10p. We examined eight single nucleotide polymorphisms (SNPs) in GAD2, which maps to this linkage region, tagging the majority of variation in the gene, and observed marginally significant (0.01 & lt; P & lt; 0.05) associations between four common variants and BMI. However, these SNPs did not account for our evidence of linkage to BMI, and they did not replicate (in direction of effect) the previous associations. We therefore conclude that these SNPs are not the etiological variants underlying this locus. We cannot rule out the possibility that other untagged variations in GAD2 may, in part, be involved, but it is most likely that alternative gene(s) within the broad gene-rich region of linkage on 10p are responsible for variation in body mass and susceptibility to obesity.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2006
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Diabetes, American Diabetes Association, Vol. 55, No. 9 ( 2006-09-01), p. 2640-2644
    Abstract: Recent data suggest that common variation in the transcription factor 7-like 2 (TCF7L2) gene is associated with type 2 diabetes. Evaluation of such associations in independent samples provides necessary replication and a robust assessment of effect size. Using four TCF7L2 single nucleotide polymorphisms (SNPs; including the two most associated in the previous study), we conducted a case-control study in 2,158 type 2 diabetic subjects and 2,574 control subjects and a family-based association analysis in 388 parent-offspring trios all from the U.K. All SNPs showed powerful associations with diabetes in the case-control analysis, with strongest effects at rs7903146 (allele-wise relative risk 1.36 [95% CI 1.24–1.48], P = 1.3 × 10−11). Data were consistent with a multiplicative model. The family-based analyses provided independent evidence for association at all loci (e.g., rs4506565, 62% transmission, P = 7 × 10−5) with no parent-of-origin effects. The frequency of diabetes-associated TCF7L2 genotypes was greater in cases ascertained for positive family history and early onset (rs4606565, P = 0.02); the population-attributable risk, estimated from the least-selected cases, is ∼16%. The overall evidence for association for these variants (P = 4.4 × 10−14 combining case-control and family-based analyses for rs4506565) exceeds genome-wide significance criteria and clearly establishes TCF7L2 as a type 2 diabetes susceptibility gene of substantial importance.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2006
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...