GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2021
    In:  IEEE Transactions on Signal Processing Vol. 69 ( 2021), p. 6530-6545
    In: IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers (IEEE), Vol. 69 ( 2021), p. 6530-6545
    Type of Medium: Online Resource
    ISSN: 1053-587X , 1941-0476
    RVK:
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2021
    detail.hit.zdb_id: 2034304-8
    detail.hit.zdb_id: 187297-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Astrophysical Journal, American Astronomical Society, Vol. 879, No. 1 ( 2019-07-05), p. 61-
    Type of Medium: Online Resource
    ISSN: 1538-4357
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2019
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Astrophysical Journal, American Astronomical Society, Vol. 931, No. 1 ( 2022-05-01), p. 56-
    Abstract: The origin(s) and mechanism(s) of fast radio bursts (FRBs), which are short radio pulses from cosmological distances, have remained a major puzzle since their discovery. We report a strong quasi-periodic oscillation (QPO) of ∼40 Hz in the X-ray burst from the magnetar SGR J1935+2154 and associated with FRB 200428, significantly detected with the Hard X-ray Modulation Telescope (Insight-HXMT) and also hinted at by the Konus–Wind data. QPOs from magnetar bursts have only been rarely detected; our 3.4 σ ( p -value is 2.9e–4) detection of the QPO reported here reveals the strongest QPO signal observed from magnetars (except in some very rare giant flares), making this X-ray burst unique among magnetar bursts. The two X-ray spikes coinciding with the two FRB pulses are also among the peaks of the QPO. Our results suggest that at least some FRBs are related to strong oscillation processes of neutron stars. We also show that we may overestimate the significance of the QPO signal and underestimate the errors of QPO parameters if QPO exists only in a fraction of the time series of an X-ray burst that we use to calculate the Leahy-normalized periodogram.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Astrophysical Journal, American Astronomical Society, Vol. 937, No. 1 ( 2022-09-01), p. 33-
    Abstract: Here we report the spectral-timing results of the black hole X-ray binary 4U 1630–47 during its 2021 outburst using observations from the Hard X-ray Modulation Telescope (Insight-HXMT). Type C quasi-periodic oscillations (QPOs) in ∼1.6–4.2 Hz and quasi-regular modulation (QRM) near 60 mHz are detected during the outburst. The mHz QRM has a fractional rms of ∼10%–16% in the 8–35 keV energy band with a Q factor (frequency/width) of ∼2–4. Benefiting from the broad energy band of Insight-HXMT, we study the energy dependence of the ∼60 mHz QRM in 1–100 keV for the first time. We find that the fractional rms of the mHz QRM increases with photon energy, while the time lags of the mHz QRM are soft and decrease with photon energy. Fast recurrence of the mHz QRM, in a timescale of less than 1 hr, has been observed during the outburst. During this period, the corresponding energy spectra moderately change when the source transitions from the QRM state to the non-QRM state. The QRM phenomenon also shows a dependence with the accretion rate. We suggest that the QRM could be caused by an unknown accretion instability aroused from the corona.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Translational Cancer Research, AME Publishing Company, Vol. 11, No. 12 ( 2022-12), p. 4349-4358
    Type of Medium: Online Resource
    ISSN: 2218-676X , 2219-6803
    Language: Unknown
    Publisher: AME Publishing Company
    Publication Date: 2022
    detail.hit.zdb_id: 2901601-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2024
    In:  Frontiers in Oncology Vol. 14 ( 2024-5-23)
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 14 ( 2024-5-23)
    Abstract: Kidney cancer is a prevalent malignancy with an increasing incidence worldwide. Blood cell indices and inflammation-related markers have shown huge potential as biomarkers for predicting cancer incidences, but that is not clear in kidney cancer. Our study aims to investigate the correlations of blood cell indices and inflammation-related markers with kidney cancer risk. Methods We performed a population-based cohort prospective analysis using data from the UK Biobank. A total of 466,994 participants, free of kidney cancer at baseline, were included in the analysis. The hazard ratios (HRs) and 95% confidence intervals (CIs) for kidney cancer risk were calculated using Cox proportional hazards regression models. Restricted cubic spline models were used to investigate nonlinear longitudinal associations. Stratified analyses were used to identify high-risk populations. The results were validated through sensitivity analyses. Results During a mean follow-up of 12.4 years, 1,710 of 466,994 participants developed kidney cancer. The Cox regression models showed that 13 blood cell indices and four inflammation-related markers were associated with kidney cancer incidence. The restricted cubic spline models showed non-linear relationships with kidney cancer. Finally, combined with stratified and sensitivity analyses, we found that the mean corpuscular hemoglobin concentration (MCHC), red blood cell distribution width (RDW), platelet distribution width (PDW), systemic immune-inflammation index (SII), and product of platelet count and neutrophil count (PPN) were related to enhanced kidney cancer risk with stable results. Conclusion Our findings identified that three blood cell indices (MCHC, RDW, and PDW) and two inflammation-related markers (SII and PPN) were independent risk factors for the incidence of kidney cancer. These indexes may serve as potential predictors for kidney cancer and aid in the development of targeted screening strategies for at-risk individuals.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 10 ( 2022-7-20)
    Abstract: Aim: The detection and segmentation of cerebral microbleeds (CMBs) images are the focus of clinical diagnosis and treatment. However, segmentation is difficult in clinical practice, and missed diagnosis may occur. Few related studies on the automated segmentation of CMB images have been performed, and we provide the most effective CMB segmentation to date using an automated segmentation system. Materials and Methods: From a research perspective, we focused on the automated segmentation of CMB targets in susceptibility weighted imaging (SWI) for the first time and then constructed a deep learning network focused on the segmentation of micro-objects. We collected and marked clinical datasets and proposed a new medical micro-object cascade network (MMOC-Net). In the first stage, U-Net was utilized to select the region of interest (ROI). In the second stage, we utilized a full-resolution network (FRN) to complete fine segmentation. We also incorporated residual atrous spatial pyramid pooling (R-ASPP) and a new joint loss function. Results: The most suitable segmentation result was achieved with a ROI size of 32 × 32. To verify the validity of each part of the method, ablation studies were performed, which showed that the best segmentation results were obtained when FRN, R-ASPP and the combined loss function were used simultaneously. Under these conditions, the obtained Dice similarity coefficient (DSC) value was 87.93% and the F2-score (F2) value was 90.69%. We also innovatively developed a visual clinical diagnosis system that can provide effective support for clinical diagnosis and treatment decisions. Conclusions: We created the MMOC-Net method to perform the automated segmentation task of CMBs in an SWI and obtained better segmentation performance; hence, this pioneering method has research significance.
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2719493-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Chemistry Vol. 9 ( 2021-10-7)
    In: Frontiers in Chemistry, Frontiers Media SA, Vol. 9 ( 2021-10-7)
    Abstract: Cyclometalated iridium (III) complexes are indispensable in the field of phosphorescent organic light-emitting diodes (PhOLEDs), while the improvement of blue iridium (III) complexes is as yet limited and challenging. More diversified blue emitters are needed to break through the bottleneck of the industry. Hence, a novel [3+2+1] coordinated iridium (III) complex (noted as Ir-dfpMepy-CN ) bearing tridentate bis-N-heterocyclic carbene (NHC) chelate (2,6-bisimidazolylidene benzene), bidentate chelates 2-(2,4-difluorophenyl)-4-methylpyridine (dfpMepy), and monodentate ligand (-CN) has been designed and synthesized. The tridentate bis-NHC ligand enhances molecular stability by forming strong bonds with the center iridium atom. The electron-withdrawing groups in the bidentate ligand (dfpMepy) and monodentate ligand (-CN) ameliorate the stability of the HOMO levels. Ir-dfpMepy-CN shows photoluminescence peaks of 440 and 466 nm with a high quantum efficiency of 84 ± 5%. Additionally, the HATCN (10 nm)/TAPC (40 nm)/TcTa (10 nm)/10 wt% Ir-dfpMepy-CN in DPEPO (10 nm)/TmPyPB (40 nm)/Liq (2.5 nm)/Al (100 nm) OLED device employing the complex shows a CIE coordinate of (0.16, 0.17), reaching a deeper blue emission. The high quantum efficiency is attributed to rapid singlet to triplet charge transfer transition of 0.9–1.2 ps. The successful synthesis of Ir-dfpMepy-CN has opened a new window to develop advanced blue emitters and dopant alternatives for future efficient blue PhOLEDs.
    Type of Medium: Online Resource
    ISSN: 2296-2646
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2711776-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Neurology, Frontiers Media SA, Vol. 14 ( 2023-6-21)
    Abstract: Early stroke prognosis assessments are critical for decision-making regarding therapeutic intervention. We introduced the concepts of data combination, method integration, and algorithm parallelization, aiming to build an integrated deep learning model based on a combination of clinical and radiomics features and analyze its application value in prognosis prediction. Methods The research steps in this study include data source and feature extraction, data processing and feature fusion, model building and optimization, model training, and so on. Using data from 441 stroke patients, clinical and radiomics features were extracted, and feature selection was performed. Clinical, radiomics, and combined features were included to construct predictive models. We applied the concept of deep integration to the joint analysis of multiple deep learning methods, used a metaheuristic algorithm to improve the parameter search efficiency, and finally, developed an acute ischemic stroke (AIS) prognosis prediction method, namely, the optimized ensemble of deep learning (OEDL) method. Results Among the clinical features, 17 features passed the correlation check. Among the radiomics features, 19 features were selected. In the comparison of the prediction performance of each method, the OEDL method based on the concept of ensemble optimization had the best classification performance. In the comparison to the predictive performance of each feature, the inclusion of the combined features resulted in better classification performance than that of the clinical and radiomics features. In the comparison to the prediction performance of each balanced method, SMOTEENN, which is based on a hybrid sampling method, achieved the best classification performance than that of the unbalanced, oversampled, and undersampled methods. The OEDL method with combined features and mixed sampling achieved the best classification performance, with 97.89, 95.74, 94.75, 94.03, and 94.35% for Macro-AUC, ACC, Macro-R, Macro-P, and Macro-F1, respectively, and achieved advanced performance in comparison with that of methods in previous studies. Conclusion The OEDL approach proposed herein could effectively achieve improved stroke prognosis prediction performance, the effect of using combined data modeling was significantly better than that of single clinical or radiomics feature models, and the proposed method had a better intervention guidance value. Our approach is beneficial for optimizing the early clinical intervention process and providing the necessary clinical decision support for personalized treatment.
    Type of Medium: Online Resource
    ISSN: 1664-2295
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2564214-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Research in Astronomy and Astrophysics, IOP Publishing, Vol. 23, No. 6 ( 2023-06-01), p. 065014-
    Abstract: The Solar Upper Transition Region Imager (SUTRI) onboard the Space Advanced Technology demonstration satellite (SATech-01), which was launched to a Sun-synchronous orbit at a height of ∼500 km in 2022 July, aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne vii 46.5 nm spectral line with a filter width of ∼3 nm. SUTRI employs a Ritchey–Chrétien optical system with an aperture of 18 cm. The on-orbit observations show that SUTRI images have a field of view of ∼ 41.′6 × 41.′6 and a moderate spatial resolution of ∼8″ without an image stabilization system. The normal cadence of SUTRI images is 30 s and the solar observation time is about 16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period. Approximately 15 GB data is acquired each day and made available online after processing. SUTRI images are valuable as the Ne vii 46.5 nm line is formed at a temperature regime of ∼0.5 MK in the solar atmosphere, which has rarely been sampled by existing solar imagers. SUTRI observations will establish connections between structures in the lower solar atmosphere and corona, and advance our understanding of various types of solar activity such as flares, filament eruptions, coronal jets and coronal mass ejections.
    Type of Medium: Online Resource
    ISSN: 1674-4527
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2511247-8
    SSG: 6,25
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...