GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 128, No. 2 ( 2018-02), p. 391-398
    Abstract: Mutations in the isocitrate dehydrogenase (IDH) genes are of proven diagnostic and prognostic significance for cerebral gliomas. The objective of this study was to evaluate the clinical feasibility of using a recently described method for determining IDH mutation status by using magnetic resonance spectroscopy (MRS) to detect the presence of 2-hydroxyglutarate (2HG), the metabolic product of the mutant IDH enzyme. METHODS By extending imaging time by 6 minutes, the authors were able to include a point-resolved spectroscopy (PRESS) MRS sequence in their routine glioma imaging protocol. In 30 of 35 patients for whom this revised protocol was used the lesions were subsequently diagnosed histologically as gliomas. Of the remaining 5 patients, 1 had a gangliocytoma, 1 had a primary CNS lymphoma, and 3 had nonneoplastic lesions. Immunohistochemistry and/or polymerase chain reaction were used to detect the presence of IDH mutations in the glioma tissue resected. RESULTS In vivo MRS for 2HG correctly identified the IDH mutational status in 88.6% of patients. The sensitivity and specificity was 89.5% and 81.3%, respectively, when using 2 mM 2HG as threshold to discriminate IDH-mutated from wildtype tumors. Two glioblastomas that had elevated 2HG levels did not have detectable IDH mutations, and in 2 IDH-mutated gliomas 2HG was not reliably detectable. CONCLUSIONS The noninvasive determination of the IDH mutation status of a presumed glioma by means of MRS may be incorporated into a routine diagnostic imaging protocol and can be used to obtain additional information for patient care.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2018
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Human Neuroscience, Frontiers Media SA, Vol. 15 ( 2021-2-3)
    Abstract: Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the target by a fused cerebral MRI and CT scan. A fully implantable neural telemetry system consisting of a 64 channel intracortical multielectrode array, a telemetry capsule, and an inductive rechargeable battery was then implanted into the visual cortex to record and manipulate local field potentials, and multi-unit activity. We achieved a 3-month stability of the functionality of the un-tethered BCI in terms of telemetric radio-communication, inductive battery charging, and device biocompatibility for 3 months. Finally, we could reliably record the local signature of sub- and suprathreshold neuronal activity in the visual cortex with high bandwidth without complications. The ability to wireless induction charging combined with the entirely implantable design, the rather high recording bandwidth, and the ability to record and stimulate simultaneously put forward a wireless BCI capable of long-term un-tethered real-time communication for causal preclinical circuit-based closed-loop interventions.
    Type of Medium: Online Resource
    ISSN: 1662-5161
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2425477-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...