GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Physical Oceanography Vol. 51, No. 7 ( 2021-07), p. 2073-2086
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 51, No. 7 ( 2021-07), p. 2073-2086
    Abstract: Although the reconfiguration of the abyssal overturning circulation has been argued to be a salient feature of Earth’s past climate changes, our understanding of the physical mechanisms controlling its strength remains limited. In particular, existing scaling theories disagree on the relative importance of the dynamics in the Southern Ocean versus the dynamics in the basins to the north. In this study, we systematically investigate these theories and compare them with a set of numerical simulations generated from an ocean general circulation model with idealized geometry, designed to capture only the basic ingredients considered by the theories. It is shown that the disagreement between existing theories can be partially explained by the fact that the overturning strengths measured in the channel and in the basin scale distinctly with the external parameters, including surface buoyancy loss, diapycnal diffusivity, wind stress, and eddy diffusivity. The overturning in the reentrant channel, which represents the Southern Ocean, is found to be sensitive to all these parameters, in addition to a strong dependence on bottom topography. By contrast, the basin overturning varies with the integrated surface buoyancy loss rate and diapycnal diffusivity but is mostly unaffected by winds and channel topography. The simulated parameter dependence of the basin overturning can be described by a scaling theory that is based only on basin dynamics.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Psychology, Frontiers Media SA, Vol. 7 ( 2016-02-08)
    Type of Medium: Online Resource
    ISSN: 1664-1078
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2016
    detail.hit.zdb_id: 2563826-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-8-23)
    Abstract: COVID-19 vaccination reduces risk of SARS-CoV-2 infection, COVID-19 severity and death. However, the rate of seroconversion after COVID-19 vaccination in cancer patients requiring systemic anticancer treatment is poorly investigated. The aim of the present study was to determine the rate of seroconversion after COVID-19 vaccination in advanced skin cancer patients under active systemic anticancer treatment. Methods This prospective single-center study of a consecutive sample of advanced skin cancer patients was performed from May 2020 until October 2021. Inclusion criteria were systemic treatment for advanced skin cancer, known COVID-19 vaccination status, repetitive anti-SARS-CoV-2-S IgG serum quantification and first and second COVID-19 vaccination. Primary outcome was the rate of anti-SARS-CoV-2-S IgG seroconversion after complete COVID-19 vaccination. Results Of 60 patients with advanced skin cancers, 52 patients (86.7%) received immune checkpoint inhibition (ICI), seven (11.7%) targeted agents (TT), one (1.7%) chemotherapy. Median follow-up time was 12.7 months. During study progress ten patients had died from skin cancer prior to vaccination completion, six patients were lost to follow-up and three patients had refused vaccination. 41 patients completed COVID-19 vaccination with two doses and known serological status. Of those, serum testing revealed n=3 patients (7.3%) as anti-SARS-CoV-2-S IgG positive prior to vaccination, n=32 patients (78.0%) showed a seroconversion, n=6 patients (14.6%) did not achieve a seroconversion. Patients failing serological response were immunocompromised due to concomitant hematological malignancy, previous chemotherapy or autoimmune disease requiring immunosuppressive comedications. Immunosuppressive comedication due to severe adverse events of ICI therapy did not impair seroconversion following COVID-19 vaccination. Of 41 completely vaccinated patients, 35 (85.4%) were under treatment with ICI, five (12.2%) with TT, and one (2.4%) with chemotherapy. 27 patients (65.9%) were treated non adjuvantly. Of these patients, 13 patients had achieved objective response (complete/partial response) as best tumor response (48.2%). Conclusion and relevance Rate of anti-SARS-CoV-2-S IgG seroconversion in advanced skin cancer patients under systemic anticancer treatment after complete COVID-19 vaccination is comparable to other cancer entities. An impaired serological response was observed in patients who were immunocompromised due to concomitant diseases or previous chemotherapies. Immunosuppressive comedication due to severe adverse events of ICI did not impair the serological response to COVID-19 vaccination.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Astronomical Society ; 2020
    In:  The Astrophysical Journal Vol. 895, No. 1 ( 2020-05-01), p. 19-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 895, No. 1 ( 2020-05-01), p. 19-
    Abstract: Liquid water oceans are at the center of our search for life on exoplanets because water is a strict requirement for life as we know it. However, oceans are dynamic habitats—and some oceans may be better hosts for life than others. In Earth’s ocean, circulation transports essential nutrients such as phosphate and is a first-order control on the distribution and productivity of life. Of particular importance is upward flow from the dark depths of the ocean in response to wind-driven divergence in surface layers. This “upwelling” returns essential nutrients that tend to accumulate at depth via sinking of organic particulates back to the sunlit regions where photosynthetic life thrives. Ocean dynamics are likely to impose constraints on the activity and atmospheric expression of photosynthetic life in exo-oceans as well, but we lack an understanding of how ocean dynamics may differ on other planets. We address this issue by exploring the sensitivity of ocean dynamics to a suite of planetary parameters using ROCKE-3D, a fully coupled ocean–atmosphere general circulation model. Our results suggest that planets that rotate slower and have higher surface pressure than Earth may be the most attractive targets for remote life detection because upwelling is enhanced under these conditions, resulting in greater nutrient supply to the surface biosphere. Seasonal deepening of the mixed layer on high-obliquity planets may also enhance nutrient replenishment from depth into the surface mixed layer. Efficient nutrient recycling favors greater biological activity, more biosignature production, and thus more detectable life. More generally, our results demonstrate the importance of considering oceanographic phenomena for exoplanet life detection and motivate future interdisciplinary contributions to the emerging field of exo-oceanography.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2020
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Sociological Science, Society for Sociological Science, Vol. 8 ( 2021), p. 371-396
    Type of Medium: Online Resource
    ISSN: 2330-6696
    Language: Unknown
    Publisher: Society for Sociological Science
    Publication Date: 2021
    detail.hit.zdb_id: 3071632-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 8 ( 2021-3-26)
    Abstract: Background: The aim of the present study was to analyze incidence, risk factors, and association with long-term outcome of postoperative delirium (POD) after transcatheter aortic valve replacement (TAVR). Methods: Six hundred and sixty one consecutive patients undergoing TAVR were prospectively enrolled from January 2016 to December 2017. POD was assessed regularly during ICU-stay using the CAM-ICU test. Results: The incidence of POD was 10.0% ( n = 66). Patients developing POD were predominantly male (65%), had higher EuroSCORE II (5.4% vs. 3.9%; P = 0.041) and were more often considered frail (70% vs. 26%; P & lt; 0.001). POD was associated with more peri-procedural complications including vascular complications (19.7 vs. 9.4; P = 0.017), bleeding (12.1 vs. 5.4%; P = 0.0495); stroke (4.5 vs. 0.7%; P = 0.025), respiratory failure requiring ventilation (16.7% vs. 1.8%; P & lt; 0.001), and pneumonia (34.8% vs. 7.1%; P & lt; 0.001). Consequently, patients with POD had significantly longer ICU- (7.9 vs. 3.2 days P & lt; 0.001) and hospital-stay (14.9 vs. 9.0 days; P & lt; 0.001), and higher in-hospital mortality (6.1 vs. 2.1%; P = 0.017). Logistic regression analysis identified male sex (odds ratio (OR) 2.2 [95% confidence interval (CI) 1.2–4.0); P = 0.012], atrial fibrillation [OR 3.0 (CI 1.6–5.6); P & lt; 0.001], frailty [OR 4.3 (CI 2.4–7.9); P & lt; 0.001], pneumonia [OR 4.4 (CI 2.3–8.7); P & lt; 0.001], stroke [OR 7.0 (CI 1.2–41.6); P = 0.031], vascular complication [OR 2.9 (CI 1.3–6.3); P = 0.007], and general anesthesia [OR 2.0 (CI 1.0–3.7); P = 0.039] as independent predictors of POD. On Cox proportional hazard analysis POD emerged as a significant predictor of 2-year mortality [HR 1.89 (CI 1.06–3.36); P = 0.030]. Conclusion: POD is a frequent finding after TAVR and is significantly associated with reduced 2-year survival. Predictors of delirium include not only peri-procedural parameters like stroke, pneumonia, vascular complications and general anesthesia but also baseline characteristics as male sex, atrial fibrillation and frailty.
    Type of Medium: Online Resource
    ISSN: 2297-055X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2781496-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Planetary Science Journal Vol. 4, No. 6 ( 2023-06-01), p. 117-
    In: The Planetary Science Journal, American Astronomical Society, Vol. 4, No. 6 ( 2023-06-01), p. 117-
    Abstract: Globally ice-covered oceans have been found on multiple moons in the solar system and may also have been a feature of Earth’s past. However, relatively little is understood about the dynamics of these ice-covered oceans, which affect not only the physical environment but also any potential life and its detectability. A number of studies have simulated the circulation of icy-world oceans, but have come to seemingly widely different conclusions. To better understand and narrow down these diverging results, we discuss the energetic constraints for the circulation on ice-covered oceans, focusing in particular on Snowball Earth, Europa, and Enceladus. The energy input that can drive ocean circulation on ice-covered bodies can be associated with heat and salt fluxes at the boundaries as well as ocean tides and librations. We show that heating from the solid core balanced by heat loss through the ice sheet can drive an ocean circulation, but the resulting flows would be relatively weak and strongly affected by rotation. Salt fluxes associated with freezing and melting at the ice sheet boundary are unlikely to energetically drive a circulation, although they can shape the large-scale circulation when combined with turbulent mixing. Ocean tides and librations may provide an energy source for such turbulence, but the magnitude of this energy source remains highly uncertain for the icy moons, which poses a major obstacle to predicting the ocean dynamics of icy worlds and remains an important topic for future research.
    Type of Medium: Online Resource
    ISSN: 2632-3338
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 3021068-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Physical Oceanography Vol. 49, No. 5 ( 2019-05), p. 1249-1268
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 49, No. 5 ( 2019-05), p. 1249-1268
    Abstract: A simple model for the deep-ocean overturning circulation is presented and applied to study the ocean’s response to a sudden surface warming. The model combines one-dimensional predictive residual advection–diffusion equations for the buoyancy in the basin and Southern Ocean surface mixed layer with diagnostic relationships for the residual overturning circulation between these regions. Despite its simplicity, the model reproduces the results from idealized general circulation model simulations and provides theoretical insights into the mechanisms that govern the response of the overturning circulation to an abrupt surface warming. Specifically, the model reproduces a rapid shoaling and weakening of the Atlantic meridional overturning circulation (AMOC) in response to surface warming, followed by a partial recovery over the following decades to centuries, and a full recovery after multiple millennia. The rapid partial recovery is associated with adjustment of the lower thermocline, which itself is shown to be accelerated by the weakened AMOC. Full equilibration instead requires adjustment of the abyssal buoyancy, which is shown to be governed by diapycnal diffusion and surface fluxes around Antarctica.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Physical Oceanography Vol. 46, No. 11 ( 2016-11), p. 3455-3470
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 46, No. 11 ( 2016-11), p. 3455-3470
    Abstract: The deep-ocean circulation and stratification have likely undergone major changes during past climates, which may have played an important role in the modulation of atmospheric CO 2 concentrations. The mechanisms by which the deep-ocean circulation changed, however, are still poorly understood and represent a major challenge to the understanding of past and future climates. This study highlights the importance of the integrated buoyancy loss rate around Antarctica in modulating the abyssal circulation and stratification. Theoretical arguments and idealized numerical simulations suggest that enhanced buoyancy loss around Antarctica leads to a strong increase in the abyssal stratification, consistent with proxy observations for the last glacial maximum. Enhanced buoyancy loss moreover leads to a contraction of the middepth overturning cell and thus upward shift of North Atlantic Deep Water (NADW). The abyssal overturning cell initially expands to fill the void. However, if the buoyancy loss rate further increases, the abyssal cell also contracts, leaving a “dead zone” with vanishing meridional flow at middepth.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Physical Oceanography Vol. 46, No. 6 ( 2016-06), p. 1963-1985
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 46, No. 6 ( 2016-06), p. 1963-1985
    Abstract: The phase speed spectrum of ocean mesoscale eddies is fundamental to understanding turbulent baroclinic flows. Since eddy phase propagation has been shown to modulate eddy fluxes, an understanding of eddy phase speeds is also of practical importance for the development of improved eddy parameterizations for coarse resolution ocean models. However, it is not totally clear whether and how linear Rossby wave theory can be used to explain the phase speed spectra in various weakly turbulent flow regimes. Using linear analysis, theoretical constraints are identified that control the eddy phase speed in a two-layer quasigeostrophic (QG) model. These constraints are then verified in a series of nonlinear two-layer QG simulations, spanning a range of parameters with potential relevance to the ocean. In the two-layer QG model, the strength of the inverse cascade exerts an important control on the eddy phase speed. If the inverse cascade is weak, the phase speed spectrum is reasonably well approximated by the phase speed of the linearly most unstable mode. A significant inverse cascade instead leads to barotropization, which in turn leads to mean phase speeds closer to those of barotropic-mode Rossby waves. The two-layer QG results are qualitatively consistent with the observed eddy phase speed spectra in the Antarctic Circumpolar Current and may also shed light on the interpretation of phase speed spectra observed in other regions.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...