GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Planetary Science Journal, American Astronomical Society, Vol. 3, No. 1 ( 2022-01-01), p. 22-
    Abstract: Europa is a premier target for advancing both planetary science and astrobiology, as well as for opening a new window into the burgeoning field of comparative oceanography. The potentially habitable subsurface ocean of Europa may harbor life, and the globally young and comparatively thin ice shell of Europa may contain biosignatures that are readily accessible to a surface lander. Europa’s icy shell also offers the opportunity to study tectonics and geologic cycles across a range of mechanisms and compositions. Here we detail the goals and mission architecture of the Europa Lander mission concept, as developed from 2015 through 2020. The science was developed by the 2016 Europa Lander Science Definition Team (SDT), and the mission architecture was developed by the preproject engineering team, in close collaboration with the SDT. In 2017 and 2018, the mission concept passed its mission concept review and delta-mission concept review, respectively. Since that time, the preproject has been advancing the technologies, and developing the hardware and software, needed to retire risks associated with technology, science, cost, and schedule.
    Type of Medium: Online Resource
    ISSN: 2632-3338
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 3021068-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Planetary Science Journal, American Astronomical Society, Vol. 3, No. 6 ( 2022-06-01), p. 142-
    Abstract: An essential part of the Exomars 2022 payload is the Mars Multispectral Imager for Subsurface Studies (Ma_MISS) experiment hosted by the drill system. Ma_MISS is a visible and near-infrared (0.4–2.3 μ m) miniaturized spectrometer with an optical head inside the drill tip capable of observing the drill borehole with a spatial resolution of 120 μ m. Here we report on how the Ma_MISS hyperspectral information provides in situ investigation of the subsurface at very fine resolution, prior to the collection of the samples that will be manipulated and crushed for further analysis by the analytical laboratory on the rover. Ma_MISS is the instrument that will closely investigate the subsurface mineralogical characteristics in its original geologic context at depths never reached before in Mars exploration. Ma_MISS recognizes all the major spectral features of the clays, basaltic, and minor phases expected at the ExoMars landing site, Oxia Planum. The high spatial resolution on the borehole wall is such that single grains of about 100 μ m can be distinguishable in the assemblage of minerals observed by Ma_MISS. The spatial distribution of the mineralogies within the borehole walls is associated with the rocks and the processes that put these materials in place and possibly altered them with time, characterizing the habitats found in the stratigraphic record, indicating which ones are the most suitable to have held or to be holding nowadays traces of life.
    Type of Medium: Online Resource
    ISSN: 2632-3338
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 3021068-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Planetary Science Journal, American Astronomical Society, Vol. 2, No. 4 ( 2021-08-01), p. 145-
    Abstract: Geochronology is an indispensable tool for reconstructing the geologic history of planets, essential to understanding the formation and evolution of our solar system. Bombardment chronology bounds models of solar system dynamics, as well as the timing of volatile, organic, and siderophile element delivery. Absolute ages of magmatic products provide constraints on the dynamics of magma oceans and crustal formation, as well as the longevity and evolution of interior heat engines and distinct mantle/crustal source regions. Absolute dating also relates habitability markers to the timescale of evolution of life on Earth. However, the number of terrains important to date on worlds of the inner solar system far exceeds our ability to conduct sample return from all of them. In preparation for the upcoming Decadal Survey, our team formulated a set of medium-class (New Frontiers) mission concepts to three different locations (the Moon, Mars, and Vesta) where sites that record solar system bombardment, magmatism, and habitability are uniquely preserved and accessible. We developed a notional payload to directly date planetary surfaces, consisting of two instruments capable of measuring radiometric ages, an imaging spectrometer, optical cameras to provide site geologic context and sample characterization, a trace-element analyzer to augment sample contextualization, and a sample acquisition and handling system. Landers carrying this payload to the Moon, Mars, and Vesta would likely fit into the New Frontiers cost cap in our study (∼$1B). A mission of this type would provide crucial constraints on planetary history while also enabling a broad suite of complementary investigations.
    Type of Medium: Online Resource
    ISSN: 2632-3338
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 3021068-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...