GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Unknown  (5)
  • 1
    Online Resource
    Online Resource
    IOP Publishing ; 2015
    In:  Environmental Research Letters Vol. 10, No. 2 ( 2015-02-01), p. 024014-
    In: Environmental Research Letters, IOP Publishing, Vol. 10, No. 2 ( 2015-02-01), p. 024014-
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    IOP Publishing ; 2019
    In:  Environmental Research Letters Vol. 14, No. 7 ( 2019-07-01), p. 074021-
    In: Environmental Research Letters, IOP Publishing, Vol. 14, No. 7 ( 2019-07-01), p. 074021-
    Abstract: Food demands are rising due to an increasing population with changing food preferences, placing pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of the agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how irrigation impacts the large-scale response of crops to varying climate conditions and how we can explicitly account for uncertainty in yield response to climate. To address these, we developed a statistical model to quantitatively estimate historical and future impacts of climate change and irrigation on US county-level crop yields with uncertainty explicitly treated. Historical climate and crop yield data for 1970–2009 were used over different growing regions to fit the model, and five CMIP5 climate projections were applied to simulate future crop yield response to climate. Maize and spring wheat yields are projected to experience decreasing trends with all models in agreement. Winter wheat yields in the Northwest will see an increasing trend. Results for soybean and winter wheat in the South are more complicated, as irrigation can change the trend in projected yields. The comparison between projected crop yield time series for rainfed and irrigated cases indicates that irrigation can buffer against climate variability that could lead to negative yield anomalies. Through trend analysis of the predictors, the trend in crop yield is mainly driven by projected trends in temperature-related indices, and county-level trend analysis shows regional differences are negligible. This framework provides estimates of the impact of climate and irrigation on US crop yields for the 21st century that account for the full uncertainty of climate variables and the range of crop response. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Applied Meteorology and Climatology Vol. 52, No. 11 ( 2013-11), p. 2460-2475
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 52, No. 11 ( 2013-11), p. 2460-2475
    Abstract: The Masinga Reservoir located in the upper Tana River basin, Kenya, is extremely important in supplying the country's hydropower and protecting downstream ecology. The dam serves as the primary storage reservoir, controlling streamflow through a series of downstream hydroelectric reservoirs. The Masinga dam's operation is crucial in meeting power demands and thus contributing significantly to the country's economy. La Niña–related prolonged droughts of 1999–2001 resulted in severe power shortages in Kenya. Therefore, seasonal streamflow forecasts contingent on climate information are essential to estimate preseason water allocation. Here, the authors utilize reservoir inflow forecasts downscaled from monthly updated precipitation forecasts from ECHAM4.5 forced with constructed analog SSTs and multimodel precipitation forecasts developed from the Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES) project to improve water allocation during the April–June and October–December seasons for the Masinga Reservoir. Three-month-ahead inflow forecasts developed from ECHAM4.5, multiple GCMs, and climatological ensembles are used in a reservoir model to allocate water for power generation by ensuring climatological probability of meeting the end-of-season target storage required to meet seasonal water demands. Retrospective reservoir analysis shows that inflow forecasts developed from single GCM and multiple GCMs perform better than use of climatological values by reducing the spill and increasing the allocation for hydropower during above-normal inflow years. Similarly, during below-normal inflow years, both of these forecasts could be effectively utilized to meet the end-of-season target storage by restricting releases for power generation. The multimodel forecasts preserve the end-of-season target storage better than the single-model inflow forecasts by reducing uncertainty and the overconfidence of individual model forecasts.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    IOP Publishing ; 2022
    In:  Environmental Research Communications Vol. 4, No. 2 ( 2022-02-01), p. 021001-
    In: Environmental Research Communications, IOP Publishing, Vol. 4, No. 2 ( 2022-02-01), p. 021001-
    Abstract: This study presents an assessment of the spatial and temporal characteristics of large tornado outbreak (LTOs) days, in which several counties were impacted by tornadoes rated F2(EF2) or greater on the Fujita (Enhanced Fujita) scale in one day. A statistical evaluation of changes in the LTO clusters for two periods, 1950–1980 and 1989–2019, has been performed. There is a geographical shift of the nucleus (central impact location) towards the southeast United States. This spatial shift is also accompanied by reduced spatial variance, suggesting LTOs have become less dispersed (or more localized) in the recent period. The overall inter-arrival rate of LTOs, and how it changed during successive 31-year climatological blocks between 1950–2019 was investigated using an exponential probability model. The arrival rate has changed from 124 days during 1950–1980 to 164 days during 1977–2007 and remained relatively constant during later periods, indicating that LTOs are becoming less frequent.
    Type of Medium: Online Resource
    ISSN: 2515-7620
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2968222-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    IOP Publishing ; 2015
    In:  Environmental Research Letters Vol. 10, No. 8 ( 2015-08-01), p. 084022-
    In: Environmental Research Letters, IOP Publishing, Vol. 10, No. 8 ( 2015-08-01), p. 084022-
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...