GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Biomedical Research and Therapy ; 2017
    In:  Biomedical Research and Therapy Vol. 4, No. S ( 2017-09-05), p. 97-
    In: Biomedical Research and Therapy, Biomedical Research and Therapy, Vol. 4, No. S ( 2017-09-05), p. 97-
    Abstract: Anterior tibial muscle of C57Bl6/J mice was subjected to decellularization with hypotonic solution, detergents and DNase. Resulting acellular scaffolds were examined to characterize the content of chromatin, cell cytoplasm and extracellular matrix components incl. basal laminas, fibres and glycoproteins. Although the sarcoplasm and cell nuclei were removed, the general skeletal muscle microarchitecture with ECM of stromal components remained well preserved at light and electron microscopic levels. Moreover, basal laminas contouring honeycomb-like structures left after removal of myofibres and vascular endothelium remained intact. Immunostaining of scaffolds for collagen IV and laminin confirmed positivity of basal laminas. Histochemical staining of deparaffinised scaffold sections identified well organized fibres after staining with green trichrome, Sirius red, Weigert’s resorcin fuchsin and Gomori impregnation. Chemical analysis gave evidence of reduced dsDNA and well-preserved collagen according to high hydroxyproline content and laminin as documented by Western blotting. We cultured scaffolds seeded with murine myogenic cells in vitro and confirmed their cytocompatibility as the cells were able to adhere, grow and migrate through the ECM without affecting the scaffold structure. Myogenic cells were able to migrate in the endomysium and start to fuse. Implantation of decellularized scaffolds into an artificial cavity inside of anterior tibial muscle of mice in vivo confirmed the scaffolds were colonized soon by recipient inflammatory cells without formation of foreign body giant cells. Scaffolds were well integrated with recipient skeletal muscle and gradually resorbed within 3 weeks. Our results confirm decellularized muscle scaffold is a promising alternative for rebuilding the skeletal muscle organ as it can preserve basic chemical components and the tissue microstructure and show biocompatibility for myogenic cells as demonstrated in vitro and in vivo.
    Type of Medium: Online Resource
    ISSN: 2198-4093 , 2198-4093
    Language: Unknown
    Publisher: Biomedical Research and Therapy
    Publication Date: 2017
    detail.hit.zdb_id: 2806789-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 9 ( 2021-7-28)
    Abstract: The preparation of unique wet and dry wound dressing products derived from unprocessed human amniotic membrane (UP-HAM) is described. The UP-HAM was decellularized, and the constituent proteins were cross-linked and stabilized before being trimmed and packed in sterile Nucril-coated laminated aluminium foil pouches with isopropyl alcohol to manufacture processed wet human amniotic membrane (PW-HAM). The dry type of PD-HAM was prepared by decellularizing the membrane, UV irradiating it, lyophilizing/freeze-drying it, sterilizing it, and storing it at room temperature. The UP-HAM consists of a translucent yellowish mass of flexible membranes with an average thickness of 42 μm. PW-HAM wound dressings that had been processed, decellularized, and dehydrated had a thinner average thickness of 30 μm and lacked nuclear-cellular structures. Following successful decellularization, discrete bundle of fibrous components in the stromal spongy layers, microvilli and reticular ridges were still evident on the surface of the processed HAM, possibly representing the location of the cells that had been removed by the decellularization process. Both wet and dry HAM wound dressings are durable, portable, have a shelf life of 3–5 years, and are available all year. A slice of HAM dressing costs 1.0 US$/cm 2 . Automation and large-scale HAM membrane preparation, as well as storage and transportation of the dressings, can all help to establish advanced technologies, improve the efficiency of membrane production, and reduce costs. Successful treatment of wounds to the cornea of the eye was achieved with the application of the HAM wound dressings. The HAM protein analysis revealed 360 μg proteins per gram of tissue, divided into three main fractions with MWs of 100 kDa, 70 kDa, and 14 kDa, as well as seven minor proteins, with the 14 kDa protein displaying antibacterial properties against human pathogenic bacteria. A wide range of antibacterial activity was observed after treatment with 75 μg/ml zinc oxide nanoparticles derived from human amniotic membrane proteins (HAMP-ZnO NP), including dose-dependent biofilm inhibition and inhibition of Gram-positive ( S. aureus, S. mutans, E. faecalis , and L. fusiformis ) and Gram-negative bacteria ( S. sonnei, P. aeruginosa, P. vulgaris, and C. freundii).
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2719493-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Endocrinology, Bioscientifica, Vol. 204, No. 3 ( 2009-12-21), p. 275-285
    Abstract: We have generated rats bearing an oxytocin (OXT)-enhanced cyan fluorescent protein (eCFP) fusion transgene designed from a murine construct previously shown to be faithfully expressed in transgenic mice. In situ hybridisation histochemistry revealed that the Oxt – eCfp fusion gene was expressed in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) in these rats. The fluorescence emanating from eCFP was observed only in the SON, the PVN, the internal layer of the median eminence and the posterior pituitary (PP). In in vitro preparations, freshly dissociated cells from the SON and axon terminals showed clear eCFP fluorescence. Immunohistochemistry for OXT and arginine vasopressin (AVP) revealed that the eCFP fluorescence co-localises with OXT immunofluorescence, but not with AVP immunofluorescence in the SON and the PVN. Although the expression levels of the Oxt – eCfp fusion gene in the SON and the PVN showed a wide range of variations in transgenic rats, eCFP fluorescence was markedly increased in the SON and the PVN, but decreased in the PP after chronic salt loading. The expression of the Oxt gene was significantly increased in the SON and the PVN after chronic salt loading in both non-transgenic and transgenic rats. Compared with wild-type animals, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration and OXT and AVP levels, suggesting that the fusion gene expression did not disturb any physiological processes. These results suggest that our new transgenic rats are a valuable new tool to identify OXT-producing neurones and their terminals.
    Type of Medium: Online Resource
    ISSN: 0022-0795 , 1479-6805
    Language: Unknown
    Publisher: Bioscientifica
    Publication Date: 2009
    detail.hit.zdb_id: 1474892-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2014
    In:  Frontiers in Cell and Developmental Biology Vol. 2 ( 2014-08-13)
    In: Frontiers in Cell and Developmental Biology, Frontiers Media SA, Vol. 2 ( 2014-08-13)
    Type of Medium: Online Resource
    ISSN: 2296-634X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2014
    detail.hit.zdb_id: 2737824-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...