GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Unknown  (2)
Material
Language
  • Unknown  (2)
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 7 ( 2013-04-01), p. 2302-2328
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 7 ( 2013-04-01), p. 2302-2328
    Abstract: Constraining the low-frequency (LF) behavior of general circulation models (GCMs) requires reliable observational estimates of LF variability. This two-part paper presents multiproxy reconstructions of Niño-3.4 sea surface temperature over the last millennium, applying two techniques [composite plus scale (CPS) and hybrid regularized expectation maximization (RegEM) truncated total least squares (TTLS)] to a network of tropical, high-resolution proxy records. This first part presents the data and methodology before evaluating their predictive skill using frozen network analysis (FNA) and pseudoproxy experiments. The FNA results suggest that about half of the Niño-3.4 variance can be reconstructed back to A.D. 1000, but they show little LF skill during certain intervals. More variance can be reconstructed in the interannual band where climate signals are strongest, but this band is affected by dating uncertainties (which are not formally addressed here). The CPS reliably estimates interannual variability, while LF fluctuations are more faithfully reconstructed with RegEM, albeit with inevitable variance loss. The RegEM approach is also tested on representative pseudoproxy networks derived from two millennium-long integrations of a coupled GCM. The pseudoproxy study confirms that reconstruction skill is significant in both the interannual and LF bands, provided that sufficient variance is exhibited in the target Niño-3.4 index. It also suggests that FNA severely underestimates LF skill, even when LF variability is strong, resulting in overly pessimistic performance assessments. The centennial-scale variance of the historical Niño-3.4 index falls somewhere between the two model simulations, suggesting that the network and methodology presented here would be able to capture the leading LF variations in Niño-3.4 for much of the past millennium, with the caveats noted above.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 7 ( 2013-04-01), p. 2329-2352
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 7 ( 2013-04-01), p. 2329-2352
    Abstract: Reducing the uncertainties surrounding the impacts of anthropogenic climate change requires vetting general circulation models (GCMs) against long records of past natural climate variability. This is particularly challenging in the tropical Pacific Ocean, where short, sparse instrumental data preclude GCM validation on multidecadal to centennial time scales. This two-part paper demonstrates the application of two statistical methodologies to a network of accurately dated tropical climate records to reconstruct sea surface temperature (SST) variability in the Niño-3.4 region over the past millennium. While Part I described the methods and established their validity and limitations, this paper presents several reconstructions of Niño-3.4, analyzes their sensitivity to procedural choices and input data, and compares them to climate forcing time series and previously published tropical Pacific SST reconstructions. The reconstructions herein show remarkably similar behavior at decadal to multidecadal scales, but diverge markedly on centennial scales. The amplitude of centennial variability in each reconstruction scales with the magnitude of the A.D. 1860–1995 trend in the target dataset’s Niño-3.4 index, with Extended Reconstructed SST, version 3 (ERSSTv3) 〉 the Second Hadley Centre SST dataset (HadSST2) 〉 Kaplan SST; these discrepancies constitute a major source of uncertainty in reconstructing preinstrumental Niño-3.4 SST. Despite inevitable variance losses, the reconstructed multidecadal variability exceeds that simulated by a state-of-the-art GCM (forced and unforced) over the past millennium, while reconstructed centennial variability is incompatible with constant boundary conditions. Wavelet coherence analysis reveals a robust antiphasing between solar forcing and Niño-3.4 SST on bicentennial time scales, but not on shorter time scales. Implications for GCM representations of the tropical Pacific climate response to radiative forcing are then discussed.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...