GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Physical Oceanography Vol. 51, No. 2 ( 2021-02), p. 343-364
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 51, No. 2 ( 2021-02), p. 343-364
    Abstract: This work aims to clarify the relation between the Atlantic meridional overturning circulation (AMOC) and the thermal wind. We derive a new and generic dynamical AMOC decomposition that expresses the thermal wind transport as a simple vertical integral function of eastern minus western boundary densities. This allows us to express density anomalies at any depth as a geostrophic transport in Sverdrups (1 Sv ≡ 10 6 m 3 s −1 ) per meter and to predict that density anomalies around the depth of maximum overturning induce most AMOC transport. We then apply this formalism to identify the dynamical drivers of the centennial AMOC variability in the CNRM-CM6 climate model. The dynamical reconstruction and specifically the thermal wind component explain over 80% of the low-frequency AMOC variance at all latitudes, which is therefore almost exclusively driven by density anomalies at both zonal boundaries. This transport variability is dominated by density anomalies between depths of 500 and 1500 m, in agreement with theoretical predictions. At those depths, southward-propagating western boundary temperature anomalies induce the centennial geostrophic AMOC transport variability in the North Atlantic. They are originated along the western boundary of the subpolar gyre through the Labrador Sea deep convection and the Davis Strait overflow.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 7 ( 2020-04-01), p. 2681-2700
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 7 ( 2020-04-01), p. 2681-2700
    Abstract: The response of the European climate to the Atlantic multidecadal variability (AMV) remains difficult to isolate in observations because of the presence of strong internal variability and anthropogenically forced signals. Using model sensitivity experiments proposed within the CMIP6/Decadal Climate Prediction Project Component C (DCPP-C) framework, the wintertime AMV–Europe teleconnection is here investigated in large ensembles of pacemaker-type simulations conducted with the CNRM-CM5 global circulation model. To evaluate the sensitivity of the model response to the AMV amplitude, twin experiments with the AMV forcing pattern multiplied by 2 and 3 (2xAMV and 3xAMV, respectively) are performed in complement to the reference ensemble (1xAMV). Based on a flow analog method, we show that the AMV-forced atmospheric circulation tends to cool down the European continent, whereas the residual signal, mostly including thermodynamical processes, contributes to warming. In 1xAMV, both terms cancel each other, explaining the overall weak AMV-forced atmospheric signal. In 2xAMV and 3xAMV, the thermodynamical contribution overcomes the dynamical cooling and is responsible for milder and wetter conditions found at large scale over Europe. The thermodynamical term includes the advection of warmer and more humid oceanic air penetrating inland and the modification of surface radiative fluxes linked to both altered cloudiness and snow-cover reduction acting as a positive feedback with the AMV amplitude. The dynamical anomalous circulation combines 1) a remote response to enhanced diabatic heating acting as a Rossby wave source in the western tropical Atlantic and 2) a local response associated with warmer SST over the subpolar gyre favoring an anomalous high. The extratropical influence is reinforced by polar amplification due to sea ice melting in all the subarctic seas. The weight between the tropical–extratropical processes and associated feedbacks is speculated to partly explain the nonlinear sensibility of the response to the AMV forcing amplitude, challenging thus the use of the so-called pattern-scaling technique to evaluate teleconnectivity and related impacts associated with decadal variability.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Past Global Changes (PAGES) ; 2017
    In:  Past Global Changes Magazine Vol. 25, No. 1 ( 2017-7), p. 1-1
    In: Past Global Changes Magazine, Past Global Changes (PAGES), Vol. 25, No. 1 ( 2017-7), p. 1-1
    Type of Medium: Online Resource
    ISSN: 2411-605X , 2411-9180
    URL: Issue
    Language: Unknown
    Publisher: Past Global Changes (PAGES)
    Publication Date: 2017
    detail.hit.zdb_id: 2779253-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 3 ( 2021-02), p. 1099-1114
    Abstract: The influence of the Atlantic multidecadal variability (AMV) and its amplitude on the Euro-Mediterranean summer climate is studied in two climate models, namely CNRM-CM5 and EC-Earth3P. Large ensembles of idealized experiments have been conducted in which North Atlantic sea surface temperatures are relaxed toward different amplitudes of the observed AMV anomalies. In agreement with observations, during a positive phase of the AMV both models simulate an increase (decrease) in temperature of 0.2°–0.8°C and a decrease (increase) in precipitation over the Mediterranean basin of 0.1–0.2 mm day −1 (northern half of Europe) compared to a negative phase. Heatwave durations over the Mediterranean land regions are 40% (up to 85% over the eastern regions) longer for a moderate amplitude of the AMV. Lower and higher amplitudes lead to longer durations of ~30% and ~100%, respectively. A comparison with observed heatwaves indicates that the AMV can considerably modulate the current anthropogenically forced response on heatwaves durations depending on the area and on the AMV amplitude. The related anticyclonic anomalies over the Mediterranean basin are associated with drier soils and a reduction of cloud cover, which concomitantly induce a decrease (increase) of the latent (sensible) heat flux, and an enhancement of the downward radiative fluxes over lands. It is found that both tropical and extratropical forcings from the AMV are needed to trigger mechanisms, which modulate the atmospheric circulation over the Euro-Atlantic region. The amplitude of the local climate response over the Mediterranean basin evolves linearly with the amplitude of the AMV. However, the strength of this relationship differs between the models, and depends on their intrinsic biases.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 1 ( 2021-01), p. 347-360
    Abstract: The influence of the Atlantic multidecadal variability (AMV) on the North Atlantic storm track and eddy-driven jet in the winter season is assessed via a coordinated analysis of idealized simulations with state-of-the-art coupled models. Data used are obtained from a multimodel ensemble of AMV± experiments conducted in the framework of the Decadal Climate Prediction Project component C. These experiments are performed by nudging the surface of the Atlantic Ocean to states defined by the superimposition of observed AMV± anomalies onto the model climatology. A robust extratropical response is found in the form of a wave train extending from the Pacific to the Nordic seas. In the warm phase of the AMV compared to the cold phase, the Atlantic storm track is typically contracted and less extended poleward and the low-level jet is shifted toward the equator in the eastern Atlantic. Despite some robust features, the picture of an uncertain and model-dependent response of the Atlantic jet emerges and we demonstrate a link between model bias and the character of the jet response.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    IOP Publishing ; 2018
    In:  Environmental Research Letters Vol. 13, No. 10 ( 2018-10-08), p. 104009-
    In: Environmental Research Letters, IOP Publishing, Vol. 13, No. 10 ( 2018-10-08), p. 104009-
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...