GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 3 ( 2017-01-10)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Climate Vol. 3 ( 2021-3-18)
    In: Frontiers in Climate, Frontiers Media SA, Vol. 3 ( 2021-3-18)
    Abstract: It is now widely recognized that in order to reach the target of limiting global warming to well below 2°C above pre-industrial levels (as the objective of the Paris agreement), cutting the carbon emissions even at an unprecedented pace will not be sufficient, but there is the need for development and implementation of active Carbon Dioxide Removal (CDR) strategies. Among the CDR strategies that currently exist, relatively few studies have assessed the mitigation capacity of ocean-based Negative Emission Technologies (NET) and the feasibility of their implementation on a larger scale to support efficient implementation strategies of CDR. This study investigates the case of ocean alkalinization, which has the additional potential of contrasting the ongoing acidification resulting from increased uptake of atmospheric CO 2 by the seas. More specifically, we present an analysis of marine alkalinization applied to the Mediterranean Sea taking into consideration the regional characteristics of the basin. Rather than using idealized spatially homogenous scenarios of alkalinization as done in previous studies, which are practically hard to implement, we use a set of numerical simulations of alkalinization based on current shipping routes to quantitatively assess the alkalinization efficiency via a coupled physical-biogeochemical model (NEMO-BFM) for the Mediterranean Sea at 1/16° horizontal resolution (~6 km) under an RCP4.5 scenario over the next decades. Simulations suggest the potential of nearly doubling the carbon-dioxide uptake rate of the Mediterranean Sea after 30 years of alkalinization, and of neutralizing the mean surface acidification trend of the baseline scenario without alkalinization over the same time span. These levels are achieved via two different alkalinization strategies that are technically feasible using the current network of cargo and tanker ships: a first approach applying annual discharge of 200 Mt Ca(OH) 2 constant over the alkalinization period and a second approach with gradually increasing discharge proportional to the surface pH trend of the baseline scenario, reaching similar amounts of annual discharge by the end of the alkalinization period. We demonstrate that the latter approach allows to stabilize the mean surface pH at present day values and substantially increase the potential to counteract acidification relative to the alkalinity added, while the carbon uptake efficiency (mole of CO 2 absorbed by the ocean per mole of alkalinity added) is only marginally reduced. Nevertheless, significant local alterations of the surface pH persist, calling for an investigation of the physiological and ecological implications of the extent of these alterations to the carbonate system in the short to medium term in order to support a safe, sustainable application of this CDR implementation.
    Type of Medium: Online Resource
    ISSN: 2624-9553
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2986708-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Climate, Frontiers Media SA, Vol. 3 ( 2021-11-25)
    Abstract: Ocean net primary production (NPP) results from CO 2 fixation by marine phytoplankton, catalysing the transfer of organic matter and energy to marine ecosystems, supporting most marine food webs, and fisheries production as well as stimulating ocean carbon sequestration. Thus, alterations to ocean NPP in response to climate change, as quantified by Earth system model experiments conducted as part of the 5th and 6th Coupled Model Intercomparison Project (CMIP5 and CMIP6) efforts, are expected to alter key ecosystem services. Despite reductions in inter-model variability since CMIP5, the ocean components of CMIP6 models disagree roughly 2-fold in the magnitude and spatial distribution of NPP in the contemporary era, due to incomplete understanding and insufficient observational constraints. Projections of NPP change in absolute terms show large uncertainty in CMIP6, most notably in the North Atlantic and the Indo-Pacific regions, with the latter explaining over two-thirds of the total inter-model uncertainty. While the Indo-Pacific has previously been identified as a hotspot for climate impacts on biodiversity and fisheries, the increased inter-model variability of NPP projections further exacerbates the uncertainties of climate risks on ocean-dependent human communities. Drivers of uncertainty in NPP changes at regional scales integrate different physical and biogeochemical factors that require more targeted mechanistic assessment in future studies. Globally, inter-model uncertainty in the projected changes in NPP has increased since CMIP5, which amplifies the challenges associated with the management of associated ecosystem services. Notably, this increased regional uncertainty in the projected NPP change in CMIP6 has occurred despite reduced uncertainty in the regional rates of NPP for historical period. Improved constraints on the magnitude of ocean NPP and the mechanistic drivers of its spatial variability would improve confidence in future changes. It is unlikely that the CMIP6 model ensemble samples the complete uncertainty in NPP, with the inclusion of additional mechanistic realism likely to widen projections further in the future, especially at regional scales. This has important consequences for assessing ecosystem impacts. Ultimately, we need an integrated mechanistic framework that considers how NPP and marine ecosystems respond to impacts of not only climate change, but also the additional non-climate drivers.
    Type of Medium: Online Resource
    ISSN: 2624-9553
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2986708-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...