GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journal of Neurosurgery Publishing Group (JNSPG)  (2)
  • Unknown  (2)
Material
Publisher
  • Journal of Neurosurgery Publishing Group (JNSPG)  (2)
Language
  • Unknown  (2)
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 1997
    In:  Journal of Neurosurgery Vol. 87, No. 2 ( 1997-08), p. 287-293
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 87, No. 2 ( 1997-08), p. 287-293
    Abstract: ✓ Despite years of research, delayed cerebral vasospasm remains a serious complication of subarachnoid hemorrhage (SAH). Recently, it has been proposed that endothelin-1 (ET-1) mediates vasospasm. The authors examined this hypothesis in a series of experiments. In a primate model of SAH, serial ET-1 levels were measured in samples from the perivascular space by using a microdialysis technique and in cerebrospinal fluid (CSF) and plasma during the development and resolution of delayed vasospasm. To determine whether elevated ET-1 production was a direct cause of vasospasm or acted secondary to ischemia, the authors also measured ET-1 levels in plasma and CSF after transient cerebral ischemia. To elucidate the source of ET-1, they measured its production in cultures of endothelial cells and astrocytes exposed to oxyhemoglobin (10 µM), methemoglobin (10 µM), or hypoxia (11% oxygen). There was no correlation between the perivascular levels of ET-1 and the development of vasospasm or its resolution. Cerebrospinal fluid and plasma levels of ET-1 were not affected by vasospasm (CSF ET-1 levels were 9.3 ± 2.2 pg/ml and ET-1 plasma levels were 1.2 ± 0.6 pg/ml) before SAH and remained unchanged when vasospasm developed (7.1 ± 1.7 pg/ml in CSF and 2.7 ± 1.5 pg/ml in plasma). Transient cerebral ischemia evoked an increase of ET-1 levels in CSF (1 ± 0.4 pg/ml at the occlusion vs. 3.1 ± 0.6 pg/ml 4 hours after reperfusion; p 〈 0.05), which returned to normal (0.7 ± 0.3 pg/ml) after 24 hours. Endothelial cells and astrocytes in culture showed inhibition of ET-1 production 6 hours after exposure to hemoglobins. Hypoxia inhibited ET-1 release by endothelial cells at 24 hours (6.4 ± 0.8 pg/ml vs. 0.1 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p 〈 0.05) and at 48 hours (6.4 ± 0.6 pg/ml vs. 0 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p 〈 0.05), but in astrocytes hypoxia induced an increase of ET-1 at 6 hours (1.5 ± 0.6 vs. 6.4 ± 1.1 pg/ml, control vs. hypoxic astrocytes; p 〈 0.05). Endothelin-1 is released from astrocytes, but not endothelial cells, during hypoxia and is released from the brain after transient ischemia. There is no relationship between ET-1 and vasospasm in vivo or between ET-1 and oxyhemoglobin, a putative agent of vasospasm, in vitro. The increase in ET-1 levels in CSF after SAH from a ruptured intracranial aneurysm appears to be the result of cerebral ischemia rather than reflecting the cause of cerebral vasospasm.
    Type of Medium: Online Resource
    ISSN: 0022-3085
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 1997
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 1997
    In:  Neurosurgical Focus Vol. 3, No. 4 ( 1997-10), p. E9-
    In: Neurosurgical Focus, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 3, No. 4 ( 1997-10), p. E9-
    Abstract: Despite years of research, delayed cerebral vasospasm remains a serious complication of subarachnoid hemorrhage (SAH). Recently, it has been proposed that endothelin-1 (ET-1) mediates vasospasm. The authors examined this hypothesis in a series of experiments. In a primate model of SAH, serial ET-1 levels were measured in samples from the perivascular space by using a microdialysis technique and in cerebrospinal fluid (CSF) and plasma during the development and resolution of delayed vasospasm. To determine whether elevated ET-1 production was a direct cause of vasospasm or acted secondary to ischemia, the authors also measured ET-1 levels in plasma and CSF after transient cerebral ischemia. To elucidate the source of ET-1, they measured its production in cultures of endothelial cells and astrocytes exposed to oxyhemoglobin (10 μM), methemoglobin (10 μM), or hypoxia (11% oxygen). There was no correlation between the perivascular levels of ET-1 and the development of vasospasm or its resolution. Cerebrospinal fluid and plasma levels of ET-1 were not affected by vasospasm (CSF ET-1 levels were 9.3 ± 2.2 pg/ml and ET-1 plasma levels were 1.2 ± 0.6 pg/ml) before SAH and remained unchanged when vasospasm developed (7.1 ± 1.7 pg/ml in CSF and 2.7 ± 1.5 pg/ml in plasma). Transient cerebral ischemia evoked an increase of ET-1 levels in CSF (1 ± 0.4 pg/ml at the occlusion vs. 3.1 ± 0.6 pg/ml 4 hours after reperfusion; p 〈 0.05), which returned to normal (0.7 ± 0.3 pg/ml) after 24 hours. Endothelial cells and astrocytes in culture showed inhibition of ET-1 production 6 hours after exposure to hemoglobins. Hypoxia inhibited ET-1 release by endothelial cells at 24 hours (6.4 ± 0.8 pg/ml vs. 0.1 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p 〈 0.05) and at 48 hours (6.4 ± 0.6 pg/ml vs. 0 ± 0.1 pg/ml, control vs. hypoxic endothelial cells; p 〈 0.05), but in astrocytes hypoxia induced an increase of ET-1 at 6 hours (1.5 ± 0.6 vs. 6.4 ± 1.1 pg/ml, control vs. hypoxic astrocytes; p 〈 0.05). Endothelin-1 is released from astrocytes, but not endothelial cells, during hypoxia and is released from the brain after transient ischemia. There is no relationship between ET-1 and vasospasm in vivo or between ET-1 and oxyhemoglobin, a putative agent of vasospasm, in vitro. The increase in ET-1 levels in CSF after SAH from a ruptured intracranial aneurysm appears to be the result of cerebral ischemia rather than reflecting the cause of cerebral vasospasm.
    Type of Medium: Online Resource
    ISSN: 1092-0684
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 1997
    detail.hit.zdb_id: 2026589-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...