GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Neurosurgery: Pediatrics, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 24, No. 5 ( 2019-11), p. 520-527
    Abstract: Scoliosis is frequently a presenting sign of Chiari malformation type I (CM-I) with syrinx. The authors’ goal was to define scoliosis in this population and describe how radiological characteristics of CM-I and syrinx relate to the presence and severity of scoliosis. METHODS A large multicenter retrospective and prospective registry of pediatric patients with CM-I (tonsils ≥ 5 mm below the foramen magnum) and syrinx (≥ 3 mm in axial width) was reviewed for clinical and radiological characteristics of CM-I, syrinx, and scoliosis (coronal curve ≥ 10°). RESULTS Based on available imaging of patients with CM-I and syrinx, 260 of 825 patients (31%) had a clear diagnosis of scoliosis based on radiographs or coronal MRI. Forty-nine patients (5.9%) did not have scoliosis, and in 516 (63%) patients, a clear determination of the presence or absence of scoliosis could not be made. Comparison of patients with and those without a definite scoliosis diagnosis indicated that scoliosis was associated with wider syrinxes (8.7 vs 6.3 mm, OR 1.25, p 〈 0.001), longer syrinxes (10.3 vs 6.2 levels, OR 1.18, p 〈 0.001), syrinxes with their rostral extent located in the cervical spine (94% vs 80%, OR 3.91, p = 0.001), and holocord syrinxes (50% vs 16%, OR 5.61, p 〈 0.001). Multivariable regression analysis revealed syrinx length and the presence of holocord syrinx to be independent predictors of scoliosis in this patient cohort. Scoliosis was not associated with sex, age at CM-I diagnosis, tonsil position, pB–C2 distance (measured perpendicular distance from the ventral dura to a line drawn from the basion to the posterior-inferior aspect of C2), clivoaxial angle, or frontal-occipital horn ratio. Average curve magnitude was 29.9°, and 37.7% of patients had a left thoracic curve. Older age at CM-I or syrinx diagnosis (p 〈 0.0001) was associated with greater curve magnitude whereas there was no association between syrinx dimensions and curve magnitude. CONCLUSIONS Syrinx characteristics, but not tonsil position, were related to the presence of scoliosis in patients with CM-I, and there was an independent association of syrinx length and holocord syrinx with scoliosis. Further study is needed to evaluate the nature of the relationship between syrinx and scoliosis in patients with CM-I.
    Type of Medium: Online Resource
    ISSN: 1933-0707 , 1933-0715
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Neurosurgery: Pediatrics, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 19, No. 6 ( 2017-06), p. 720-728
    Abstract: Many patients with medically intractable epilepsy have mesial temporal sclerosis (MTS), which significantly affects their quality of life. The surgical excision of MTS lesions can result in marked improvement or even complete resolution of the epileptic episodes. Reliable radiological diagnosis of MTS is a clinical challenge. The purpose of this study was to evaluate the utility of volumetric mapping of the hippocampi for the identification of MTS in a case-controlled series of pediatric patients who underwent resection for medically refractory epilepsy, using pathology as a gold standard. METHODS A cohort of 57 pediatric patients who underwent resection for medically intractable epilepsy between 2005 and 2015 was evaluated. On pathological investigation, this group included 24 patients with MTS and 33 patients with non-MTS findings. Retrospective quantitative volumetric measurements of the hippocampi were acquired for 37 of these 57 patients. Two neuroradiologists with more than 10 years of experience who were blinded to the patients' MTS status performed the retrospective review of MR images. To produce the volumetric data, MR scans were parcellated and segmented using the FreeSurfer software suite. Hippocampal regions of interest were compared against an age-weighted local regression curve generated with data from the pediatric normal cohort. Standard deviations and percentiles of specific subjects were calculated. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for the original clinical read and the expert readers. Receiver operating characteristic curves were generated for the methods of classification to compare results from the readers with the authors' results, and an optimal threshold was determined. From that threshold the sensitivity, specificity, PPV, and NPV were calculated for the volumetric analysis. RESULTS With the use of quantitative volumetry, a sensitivity of 72%, a specificity of 95%, a PPV of 93%, an NPV of 78%, and an area under the curve of 0.84 were obtained using a percentage difference of normalized hippocampal volume. The resulting specificity (95%) and PPV (93%) are superior to the original clinical read and to Reader A and Reader B's findings (range for specificity 74%–86% and for PPV 64%–71%). The sensitivity (72%) and NPV (78%) are comparable to Reader A's findings (73% and 81%, respectively) and are better than those of the original clinical read and of Reader B (sensitivity 45% and 63% and NPV 71% and 70%, respectively). CONCLUSIONS Volumetric measurement of the hippocampi outperforms expert readers in specificity and PPV, and it demonstrates comparable to superior sensitivity and NPV. Volumetric measurements can complement anatomical imaging for the identification of MTS, much like a computer-aided detection tool would. The implementation of this approach in the daily clinical workflow could significantly improve diagnostic accuracy.
    Type of Medium: Online Resource
    ISSN: 1933-0707 , 1933-0715
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Neurosurgery: Pediatrics, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 20, No. 6 ( 2017-12), p. 583-590
    Abstract: Cerebral mapping for surgical planning and operative guidance is a challenging task in neurosurgery. Pediatric patients are often poor candidates for many modern mapping techniques because of inability to cooperate due to their immature age, cognitive deficits, or other factors. Resting-state functional MRI (rs-fMRI) is uniquely suited to benefit pediatric patients because it is inherently noninvasive and does not require task performance or significant cooperation. Recent advances in the field have made mapping cerebral networks possible on an individual basis for use in clinical decision making. The authors present their initial experience translating rs-fMRI into clinical practice for surgical planning in pediatric patients. METHODS The authors retrospectively reviewed cases in which the rs-fMRI analysis technique was used prior to craniotomy in pediatric patients undergoing surgery in their institution. Resting-state analysis was performed using a previously trained machine-learning algorithm for identification of resting-state networks on an individual basis. Network maps were uploaded to the clinical imaging and surgical navigation systems. Patient demographic and clinical characteristics, including need for sedation during imaging and use of task-based fMRI, were also recorded. RESULTS Twenty patients underwent rs-fMRI prior to craniotomy between December 2013 and June 2016. Their ages ranged from 1.9 to 18.4 years, and 12 were male. Five of the 20 patients also underwent task-based fMRI and one underwent awake craniotomy. Six patients required sedation to tolerate MRI acquisition, including resting-state sequences. Exemplar cases are presented including anatomical and resting-state functional imaging. CONCLUSIONS Resting-state fMRI is a rapidly advancing field of study allowing for whole brain analysis by a noninvasive modality. It is applicable to a wide range of patients and effective even under general anesthesia. The nature of resting-state analysis precludes any need for task cooperation. These features make rs-fMRI an ideal technology for cerebral mapping in pediatric neurosurgical patients. This review of the use of rs-fMRI mapping in an initial pediatric case series demonstrates the feasibility of utilizing this technique in pediatric neurosurgical patients. The preliminary experience presented here is a first step in translating this technique to a broader clinical practice.
    Type of Medium: Online Resource
    ISSN: 1933-0707 , 1933-0715
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Neurosurgery: Pediatrics, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 18, No. 3 ( 2016-09), p. 306-319
    Abstract: The purpose of this study was to investigate white matter (WM) structural abnormalities using diffusion tensor imaging (DTI) in children with hydrocephalus before CSF diversionary surgery (including ventriculoperitoneal shunt insertion and endoscopic third ventriculostomy) and during the course of recovery after surgery in association with neuropsychological and behavioral outcome. METHODS This prospective study included 54 pediatric patients with congenital hydrocephalus (21 female, 33 male; age range 0.03–194.5 months) who underwent surgery and 64 normal controls (30 female, 34 male; age range 0.30–197.75 months). DTI and neurodevelopmental outcome data were collected once in the control group and 3 times (preoperatively and at 3 and 12 months postoperatively) in the patients with hydrocephalus. DTI measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values were extracted from the genu of the corpus callosum (gCC) and the posterior limb of internal capsule (PLIC). Group analysis was performed first cross-sectionally to quantify DTI abnormalities at 3 time points by comparing the data obtained in the hydrocephalus group for each of the 3 time points to data obtained in the controls. Longitudinal comparisons were conducted pairwise between different time points in patients whose data were acquired at multiple time points. Neurodevelopmental data were collected and analyzed using the Adaptive Behavior Assessment System, Second Edition, and the Bayley Scales of Infant Development, Third Edition. Correlation analyses were performed between DTI and behavioral measures. RESULTS Significant DTI abnormalities were found in the hydrocephalus patients in both the gCC (lower FA and higher MD, AD, and RD) and the PLIC (higher FA, lower AD and RD) before surgery. The DTI measures in the gCC remained mostly abnormal at 3 and 12 months after surgery. The DTI abnormalities in the PLIC were significant in FA and AD at 3 months after surgery but did not persist when tested at 12 months after surgery. Significant longitudinal DTI changes in the patients with hydrocephalus were found in the gCC when findings at 3 and 12 months after surgery were compared. In the PLIC, trend-level longitudinal changes were observed between preoperative findings and 3-month postoperative findings, as well as between 3- and 12-month postoperative findings. Significant correlation between DTI and developmental outcome was found at all 3 time points. Notably, a significant correlation was found between DTI in the PLIC at 3 months after surgery and developmental outcome at 12 months after surgery. CONCLUSIONS The data showed significant WM abnormality based on DTI in both the gCC and the PLIC in patients with congenital hydrocephalus before surgery, and the abnormalities persisted in both the gCC and the PLIC at 3 months after surgery. The DTI values remained significantly abnormal in the gCC at 12 months after surgery. Longitudinal analysis showed signs of recovery in both WM structures between different time points. Combined with the significant correlation found between DTI and neuropsychological measures, the findings of this study suggest that DTI can serve as a sensitive imaging biomarker for underlying neuroanatomical changes and postsurgical developmental outcome and even as a predictor for future outcomes.
    Type of Medium: Online Resource
    ISSN: 1933-0707 , 1933-0715
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Neurosurgery: Pediatrics, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 24, No. 4 ( 2019-10), p. 461-468
    Abstract: Traditionally, diffusion MRI (dMRI) has been performed in parallel with high-resolution conventional MRI, which requires long scan times and may require sedation or general anesthesia in infants and young children. Conversely, fast brain MRI permits image acquisition without the need for sedation, although its short pulse sequences, susceptibility to motion artifact, and contrast resolution have limited its use to assessing ventricular size or major structural variations. Here, the authors demonstrate the feasibility of leveraging a 3-direction fast brain MRI protocol to obtain reliable dMRI measures. METHODS Fast brain MRI with 3-direction dMRI was performed in infants and children before and after hydrocephalus treatment. Regions of interest in the posterior limbs of the internal capsules (PLICs) and the genu of the corpus callosum (gCC) were drawn on diffusion-weighted images, and mean diffusivity (MD) data were extracted. Ventricular size was determined by the frontal occipital horn ratio (FOHR). Differences between and within groups pre- and posttreatment, and FOHR-MD correlations were assessed. RESULTS Of 40 patients who met inclusion criteria (median age 27.5 months), 15 (37.5%), 17 (42.5%), and 8 (20.0%) had posthemorrhagic hydrocephalus (PHH), congenital hydrocephalus (CH), or no intracranial abnormality (controls), respectively. A hydrocephalus group included both PHH and CH patients. Prior to treatment, the FOHR (p 〈 0.001) and PLIC MD (p = 0.027) were greater in the hydrocephalus group than in the controls. While the mean gCC MD in the hydrocephalus group (1.10 × 10 −3 mm 2 /sec) was higher than that of the control group (0.98), the difference was not significant (p = 0.135). Following a median follow-up duration of 14 months, decreases in FOHR, PLIC MD, and gCC MD were observed in the hydrocephalus group and were similar to those in the control group (p = 0.107, p = 0.702, and p = 0.169, respectively). There were no correlations identified between FOHR and MDs at either time point. CONCLUSIONS The utility of fast brain MRI can be extended beyond anatomical assessments to obtain dMRI measures. A reduction in PLIC and gCC MD to levels similar to those of controls was observed within 14 months following shunt surgery for hydrocephalus in PHH and CH infants. Further studies are required to assess the role of fast brain dMRI for assessing clinical outcomes in pediatric hydrocephalus patients.
    Type of Medium: Online Resource
    ISSN: 1933-0707 , 1933-0715
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Neurosurgery: Pediatrics, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 15, No. 6 ( 2015-06), p. 547-551
    Abstract: Assessment of ventricular size is essential in clinical management of hydrocephalus and other neurological disorders. At present, ventricular size is assessed using indices derived from the dimensions of the ventricles rather than the actual volumes. In a population of 22 children with congenital hydrocephalus and 22 controls, the authors evaluated the relationship between ventricular volume and linear indices in common use, such as the frontooccipital horn ratio, Evans' index, and the bicaudate index. Ventricular volume was measured on high-resolution anatomical MR images. The frontooccipital horn ratio was found to have a stronger correlation with both absolute and relative ventricular volume than other indices. Further analysis of the brain volumes found that congenital hydrocephalus produced a negligible decrease in the volume of the brain parenchyma.
    Type of Medium: Online Resource
    ISSN: 1933-0707 , 1933-0715
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2019
    In:  Neurosurgical Focus Vol. 47, No. 6 ( 2019-12), p. E15-
    In: Neurosurgical Focus, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 47, No. 6 ( 2019-12), p. E15-
    Abstract: Resting-state functional MRI (rs-fMRI) is a well-established method for studying intrinsic connectivity and mapping the topography of functional networks in the human brain. In the clinical setting, rs-fMRI has been used to define functional topography, typically language and motor systems, in the context of preoperative planning for neurosurgery. Intraoperative mapping of critical speech and motor areas with electrocortical stimulation (ECS) remains standard practice, but preoperative noninvasive mapping has the potential to reduce operative time and provide functional localization when awake mapping is not feasible. Task-based fMRI has historically been used for this purpose, but it can be limited by the young age of the patient, cognitive impairment, poor cooperation, and need for sedation. Resting-state fMRI allows reliable analysis of all functional networks with a single study and is inherently independent of factors affecting task performance. In this review, the authors provide a summary of the theory and methods for resting-state network mapping. They provide case examples illustrating clinical implementation and discuss limitations of rs-fMRI and review available data regarding performance in comparison to ECS. Finally, they discuss novel opportunities for future clinical applications and prospects for rs-fMRI beyond mapping of regions to avoid during surgery but, instead, as a tool to guide novel network-based therapies.
    Type of Medium: Online Resource
    ISSN: 1092-0684
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2019
    detail.hit.zdb_id: 2026589-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Medical Imaging, SPIE-Intl Soc Optical Eng, Vol. 4, No. 03 ( 2017-9-1), p. 1-
    Type of Medium: Online Resource
    ISSN: 2329-4302
    Language: Unknown
    Publisher: SPIE-Intl Soc Optical Eng
    Publication Date: 2017
    detail.hit.zdb_id: 2768118-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...