GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (3)
  • Unknown  (3)
Material
Publisher
  • American Meteorological Society  (3)
Language
  • Unknown  (3)
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2024
    In:  Journal of the Atmospheric Sciences Vol. 81, No. 2 ( 2024-02), p. 459-475
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 81, No. 2 ( 2024-02), p. 459-475
    Abstract: The Taklimakan Desert is one of key climate regions in East Asia, both highly influencing and highly sensitive to local/regional climate change. Based on a comprehensive observation experiment from 1 to 31 May 2022 in the hinterland of the Taklimakan Desert, the characteristics and mechanisms of turbulence intermittency are investigated in this study, with the purpose to correct turbulent fluxes. Using an improved algorithm to decompose turbulence and submeso motions, two intermittency regimes are recognized in the Taklimakan Desert, namely, D and T intermittency and onD intermittency. The former occurs under strongly stable conditions, characterized by the coexistence of dynamic and thermodynamic turbulence intermittency. The latter occurs under strongly unstable conditions and represents only dynamic turbulence intermittency. Physically, the D and T intermittency regime is related to submeso waves, whereas the onD regime is caused by the horizontal convergence/divergence of convective circulations. With the influence of intermittency and submeso motions, the observed turbulent statistics deviate from reality, which would mask the similarity relationships. To overcome the problem, turbulent statistics are corrected by removing submeso components from original fluctuations. The effectiveness of this method is demonstrated based on the flux–gradient relationships. It is also suggested that, for a big dataset, the impact of onD intermittency can be simply corrected by a correction factor while that of D and T intermittency cannot. The results of this study are helpful to develop the parameterization of turbulent exchange processes in the Taklimakan Desert, which is significant to improve the accuracy of weather forecasting and climate prediction. Significance Statement The Taklimakan Desert plays an important role in the evolution of weather and climate in East Asia. With strong surface thermal forcing, turbulence often shows distinctive intermittency, which largely constrains the evaluation of land–atmosphere exchange in this key climate region. This study aims to understand the characteristics of turbulence intermittency and its physical mechanisms, and further to correct the influence of turbulence intermittency on turbulent fluxes in the Taklimakan Desert. This is significant because the results are helpful to improve the parameterization of subgrid processes in the key climate region for atmospheric models, which points the way toward enhancing the accuracy of weather forecasting and climate prediction.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2024
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Hydrometeorology Vol. 24, No. 3 ( 2023-03), p. 373-388
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 24, No. 3 ( 2023-03), p. 373-388
    Abstract: In this study, we investigate the air temperature response to land-use and land-cover change (LULCC; cropland expansion and deforestation) using subgrid land model output generated by a set of CMIP6 model simulations. Our study is motivated by the fact that ongoing land-use activities are occurring at local scales, typically significantly smaller than the resolvable scale of a grid cell in Earth system models. It aims to explore the potential for a multimodel approach to better characterize LULCC local climatic effects. On an annual scale, the CMIP6 models are in general agreement that croplands are warmer than primary and secondary land (psl; mainly forests, grasslands, and bare ground) in the tropics and cooler in the mid–high latitudes, except for one model. The transition from warming to cooling occurs at approximately 40°N. Although the surface heating potential, which combines albedo and latent heat flux effects, can explain reasonably well the zonal mean latitudinal subgrid temperature variations between crop and psl tiles in the historical simulations, it does not provide a good prediction on subgrid temperature for other land tile configurations (crop vs forest; grass vs forest) under Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) forcing scenarios. A subset of simulations with the CESM2 model reveals that latitudinal subgrid temperature variation is positively related to variation in net surface shortwave radiation and negatively related to variation in the surface energy redistribution factor, with a dominant role from the latter south of 30°N. We suggest that this emergent relationship can be used to benchmark the performance of land surface parameterizations and for prediction of local temperature response to LULCC.
    Type of Medium: Online Resource
    ISSN: 1525-755X , 1525-7541
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Applied Meteorology and Climatology Vol. 58, No. 8 ( 2019-08), p. 1689-1708
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 58, No. 8 ( 2019-08), p. 1689-1708
    Abstract: The Weather Research and Forecasting (WRF) Model is used in large-eddy simulation (LES) mode to investigate a lake-breeze case occurring on 12 June 2012 over the Lake Taihu region of China. Observational data from 15 locations, wind profiler radar, and the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to evaluate the WRF nested-LES performance in simulating lake breezes. Results indicate that the simulated temporal and spatial variations of the lake breeze by WRF nested LES are consistent with observations. The simulations with high-resolution grid spacing and the LES scheme have a high correlation coefficient and low mean bias when evaluated against 2-m temperature, 10-m wind, and horizontal and vertical lake-breeze circulations. The atmospheric boundary layer (ABL) remains stable over the lake throughout the lake-breeze event, and the stability becomes even stronger as the lake breeze reaches its mature stage. The improved ABL simulation with LES at a grid spacing of 150 m indicates that the non-LES planetary boundary layer parameterization scheme does not adequately represent subgrid-scale turbulent motions. Running WRF fully coupled to a lake model improves lake-surface temperature and consequently the lake-breeze simulations. Allowing for additional model spinup results in a positive impact on lake-surface temperature prediction but is a heavy computational burden. Refinement of a water-property parameter used in the Community Land Model, version 4.5, within WRF and constraining the lake-surface temperature with observational data would further improve lake-breeze representation.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...