GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Yang, Yuhong  (4)
  • Unknown  (4)
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Plant Science Vol. 14 ( 2023-5-30)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-5-30)
    Abstract: Root-knot nematodes (RKN) disease is a devastating disease in Cucumis crops production. Existing studies have shown that resistant and susceptible crops are enriched with different rhizosphere microorganisms, and microorganisms enriched in resistant crops can antagonize pathogenic bacteria. However, the characteristics of rhizosphere microbial communities of Cucumis crops after RKN infestation remain largely unknown. Methods In this study, we compared the changes in rhizosphere bacterial communities between highly RKN-resistant Cucumis metuliferus (cm3) and highly RKN-susceptible Cucumis sativus (cuc) after RKN infection through a pot experiment. Results The results showed that the strongest response of rhizosphere bacterial communities of Cucumis crops to RKN infestation occurred during early growth, as evidenced by changes in species diversity and community composition. However, the more stable structure of the rhizosphere bacterial community in cm3 was reflected in less changes in species diversity and community composition after RKN infestation, forming a more complex and positively co-occurrence network than cuc. Moreover, we observed that both cm3 and cuc recruited bacteria after RKN infestation, but the bacteria enriched in cm3 were more abundant including beneficial bacteria Acidobacteria, Nocardioidaceae and Sphingomonadales. In addition, the cuc was enriched with beneficial bacteria Actinobacteria, Bacilli and Cyanobacteria. We also found that more antagonistic bacteria than cuc were screened in cm3 after RKN infestation and most of them were Pseudomonas (Proteobacteria, Pseudomonadaceae), and Proteobacteria were also enriched in cm3 after RKN infestation. We hypothesized that the cooperation between Pseudomonas and the beneficial bacteria in cm3 could inhibit the infestation of RKN. Discussion Thus, our results provide valuable insights into the role of rhizosphere bacterial communities on RKN diseases of Cucumis crops, and further studies are needed to clarify the bacterial communities that suppress RKN in Cucumis crops rhizosphere.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2018
    In:  Frontiers in Plant Science Vol. 9 ( 2018-3-23)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 9 ( 2018-3-23)
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Plant Science Vol. 14 ( 2023-3-20)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-3-20)
    Abstract: Root-knot nematode (RKN) is a major factor that limits the growth and productivity of important Cucumis crops, such as cucumber and melon, which lack RKN-resistance genes in their genome. Cucumis metuliferus is a wild Cucumis species that displays a high degree of RKN-resistance. WRKY transcription factors were involved in plant response to biotic stresses. However, little is known on the function of WRKY genes in response to RKN infection in Cucumis crops. In this study, Cucumis metuliferus 60 WRKY genes ( CmWRKY ) were identified in the C. metuliferus genome, and their conserved domains were classified into three main groups based on multiple sequence alignment and phylogenetic analysis. Synteny analysis indicated that the WRKY genes were highly conserved in Cucumis crops. Transcriptome data from of C. metuliferus roots inoculated with RKN revealed that 16 CmWRKY genes showed differential expression, of which 13 genes were upregulated and three genes were downregulated, indicating that these CmWRKY genes are important to C. metuliferus response to RKN infection. Two differentially expression CmWRKY genes ( CmWRKY10 and CmWRKY28 ) were selected for further functional analysis. Both CmWRKY genes were localized in nucleus, indicating they may play roles in transcriptional regulation. This study provides a foundation for further research on the function of CmWRKY genes in RKN stress resistance and elucidation of the regulatory mechanism.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Horticultural Science ; 2010
    In:  Journal of the American Society for Horticultural Science Vol. 135, No. 1 ( 2010-01), p. 53-58
    In: Journal of the American Society for Horticultural Science, American Society for Horticultural Science, Vol. 135, No. 1 ( 2010-01), p. 53-58
    Abstract: Scab, caused by Cladosporium cucumerinum Ell. et Arthur, is a prevalent disease of cucumber ( Cucumis sativus L.) worldwide. Scab can cause serious losses for cucumber production, especially in protected culture such as high tunnel production. Resistance to cucumber scab is dominant and is controlled by a single gene, Ccu . Breeding for resistant cultivars is the most efficient way to control the disease. Selection for resistance might be made easier if the gene were mapped to linked markers. Thus far, there are no tightly linked (genetic distance less than 1 cM) simple sequence repeat (SSR) markers for the Ccu gene, and no studies on mapping of the Ccu gene in cucumber using SSR markers. The objective of this study was to identify SSR markers for use in molecular breeding of scab resistance. In this study, we used a population of recombinant inbred lines (RILs). The population included 148 individuals derived from the cucumber inbred line 9110 Gt ( Ccu Ccu ) crossed with line 9930 ( ccu ccu ). The Ccu gene was mapped to linkage group 2, corresponding to chromosome 2 of cucumber. The flanking markers SSR03084 and SSR17631 were linked to the Ccu gene with distances of 0.7 and 1.6 cM, respectively. The veracity of SSR03084 and SSR17631 was tested using 59 diverse inbred lines and hybrids, and the accuracy rate for the two markers was 98.3%. In conclusion, two SSRs closely linked to scab resistance gene Ccu have been identified and can be used in a cucumber breeding program.
    Type of Medium: Online Resource
    ISSN: 0003-1062 , 2327-9788
    Language: Unknown
    Publisher: American Society for Horticultural Science
    Publication Date: 2010
    detail.hit.zdb_id: 2040057-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...