GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Immunology Vol. 13 ( 2022-1-31)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 13 ( 2022-1-31)
    Abstract: Middle East respiratory syndrome coronavirus (MERS-CoV) is an emergent coronavirus that has caused frequent zoonotic events through camel-to-human spillover. An effective camelid vaccination strategy is probably the best way to reduce human exposure risk. Here, we constructed and evaluated an inactivated rabies virus-vectored MERS-CoV vaccine in mice, camels, and alpacas. Potent antigen-specific antibody and CD8 + T-cell responses were generated in mice; moreover, the vaccination reduced viral replication and accelerated virus clearance in MERS-CoV-infected mice. Besides, protective antibody responses against both MERS-CoV and rabies virus were induced in camels and alpacas. Satisfyingly, the immune sera showed broad cross-neutralizing activity against the three main MERS-CoV clades. For further characterization of the antibody response induced in camelids, MERS-CoV-specific variable domains of heavy-chain-only antibody (VHHs) were isolated from immunized alpacas and showed potent prophylactic and therapeutic efficacies in the Ad5-hDPP4-transduced mouse model. These results highlight the inactivated rabies virus-vectored MERS-CoV vaccine as a promising camelid candidate vaccine.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Materials Vol. 8 ( 2022-1-21)
    In: Frontiers in Materials, Frontiers Media SA, Vol. 8 ( 2022-1-21)
    Abstract: The topological state in photonics was first realized based on the magnetic-optic (MO) effect and developed rapidly in recent years. This review summarizes various topological states. First, the conventional topological chiral edge states, which are accomplished in periodic and aperiodic systems based on the MO effect, are introduced. Some typical novel topological states, including valley-dependent edge states, helical edge states, antichiral edge states, and multimode edge states with large Chern numbers in two-dimensional and Weyl points three-dimensional spaces, have been introduced. The manifest point of these topological states is the wide range of applications in wave propagation and manipulation, to name a few, one-way waveguides, isolator, slow light, and nonreciprocal Goos–Hänchen shift. This review can bring comprehensive physical insights into the topological states based on the MO effect and provides reference mechanisms for light one-way transmission and light control.
    Type of Medium: Online Resource
    ISSN: 2296-8016
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2759394-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Surgery, Frontiers Media SA, Vol. 9 ( 2023-1-16)
    Abstract: The bacterial cellulose membrane (BCM) has been widely studied and applied as a new biomaterial for wound healing, but causes pain with frequent dressing changes. Local application of bone marrow mesenchymal stem cells (BMSCs) requires a niche. Furthermore, the effect and mechanism of the BCM combined with BMSCs have not been reported. Methods Morphological and chemical identifications of BCMs were investigated by porosity analyses, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Biological wound dressings (BWDs) were prepared by the BCM in combination with BMSCs. The biological effects of BWDs on human dermal fibroblast (HDF) and VEGF-A in human vascular endothelial cells (HuVECs) were detected in vitro , and the effect of BWDs on acute wounds in mice was detected in vivo . Collagen and angiogenesis were evaluated through hematoxylin–eosin staining and Masson staining. The expressions of COL-1 and VEGF-A and the activation of the Notch signaling pathway in vivo and in vitro were detected by quantitative reverse-transcriptase polymerase chain reaction. Results The BCM had a nanoscale structure and provided a partial niche for the survival and proliferation of BMSCs. BWDs were successfully prepared and regulated the biological behaviors of wound healing-related cells in vitro and upregulated the expressions of COL-1 in HDF and VEGF-A in HuVECs. BWDs promoted wound healing by increasing collagen type I synthesis and angiogenesis in acute wounds in mice. Conclusions BWDs prepared by the combination of nanomaterial BCMs and BMSCs facilitated acute wound healing, which may be regulated by activating the Notch signaling pathway.
    Type of Medium: Online Resource
    ISSN: 2296-875X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2773823-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Public Health, Frontiers Media SA, Vol. 10 ( 2022-10-31)
    Abstract: Stable angina pectoris (SAP) often occurs in the elderly and is relatively stable for 1–3 months; however, if patients do not receive effective treatment, life-threatening acute myocardial infarction could occur. Patients with different clinical types of coronary heart disease have different intestinal flora. Baduanjin, a traditional Chinese Qigong, has been used as adjuvant therapy to improve the symptoms of patients with SAP. Objective To determine the effect of Baduanjin exercise on the symptoms of patients with SAP and the intestinal flora, explore the action links and targets of Baduanjin intervention in elderly patients with SAP, and explain its mechanism. Design A single-center, single-blind, randomized controlled trial. Patients and outcome assessors were blinded to group allocation. Setting The trial will be conducted at Guang'anmen Hospital of China Academy of Chinese Medical Sciences. Participants One hundred and eighty patients aged 60 to 80 years with stable angina pectoris (I–III) were intervened for 8 weeks and followed up for half a year. Interventions Among the screened patients, 180 patients will be randomly assigned to either the Baduanjin or the control group at a 1:1 ratio (exercise duration: for 3–5 times a week, for 8 weeks) of moderate-intensity Baduanjin or free activities. Main and secondary results The main result is the total effective rate for angina pectoris symptoms; secondary results include the duration of angina pectoris, number of angina pectoris episodes per week, nitroglycerin consumption, nitroglycerin reduction rate, Seattle angina score (SAQ), quality of life (SF-36),Traditional Chinese Medicine (TCM) syndrome scores, electrocardiogram (ECG) changes, blood lipid serum hypersensitive C-reactive protein levels, intestinal flora changes, serum changes in the intestinal flora metabolite Trimetlylamine oxide (TMAO), and non-targeted liposome detection. Adverse events will be recorded throughout the experiment, and the data will be analyzed by researchers who did not know about the assignment. Discussion This study provides compelling evidence for at-home use of Baduanjin exercise to relieve SAP-associated symptoms. Trial registration This study was approved by the ethics committee of Guang'anmen Hospital of China Academy of Chinese Medical Sciences (2022-121-KY). The trial has been registered in Chinese Clinical Trial Registration Center (ChiCTR2200062450).
    Type of Medium: Online Resource
    ISSN: 2296-2565
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2711781-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Chinese Physics Letters, IOP Publishing, Vol. 40, No. 8 ( 2023-08-01), p. 087302-
    Abstract: Research of spin polarization of magnetic CoFeB thin films is of practical importance in spintronic applications. Here, using a direct characterization technique of spin-resolved photoemission spectroscopy, we obtain the surface spin polarization of amorphous Co 40 Fe 40 B 20 thin films with different annealing temperatures from 100 °C to 500 °C prepared by magnetron sputtering. After high annealing temperature, a quasi-semiconductor state is gradually formed at the CoFeB surface due to the boron diffusion. While the global magnetization remains almost constant, the secondary electrons’ spin polarization, average valence band spin polarization and the spin polarization at Fermi level from spin-resolved photoemission spectroscopy show a general trend of decreasing with the increasing annealing temperature above 100 °C. These distinct surface properties are attributed to the enhanced Fe–B bonding due to the boron segregation upon surface after annealing as confirmed by x-ray photoelectron spectroscopy and scanning transmission electron microscopy with energy dispersive spectroscopy. Our findings provide insight into the surface spin-resolved electronic structure of the CoFeB thin films, which should be important for development of high-performance magnetic random-access memories.
    Type of Medium: Online Resource
    ISSN: 0256-307X , 1741-3540
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2040565-0
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Microbiology Vol. 13 ( 2022-12-14)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2022-12-14)
    Abstract: The risk of cardiovascular disease (CVD) is associated with unusual changes in the human gut microbiota, most commonly coronary atherosclerotic heart disease, hypertension, and heart failure. Immune mechanisms maintain a dynamic balance between the gut microbiota and the host immune system. When one side changes and the balance is disrupted, different degrees of damage are inflicted on the host and a diseased state gradually develops over time. This review summarizes the immune mechanism of the gut microbiota and its metabolites in the occurrence of common CVDs, discusses the relationship between gut-heart axis dysfunction and the progression of CVD, and lists the currently effective methods of regulating the gut microbiota for the treatment of CVDs.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    IOP Publishing ; 2021
    In:  Chinese Physics B Vol. 30, No. 11 ( 2021-12-01), p. 117801-
    In: Chinese Physics B, IOP Publishing, Vol. 30, No. 11 ( 2021-12-01), p. 117801-
    Abstract: Photonic-plasmonic hybrid microcavities, which possess a higher figure of merit Q / V (the ratio of quality factor to mode volume) than that of pure photonic microcavities or pure plasmonic nano-antennas, play key roles in enhancing light–matter interaction. In this review, we summarize the typical photonic-plasmonic hybrid microcavities, such as photonic crystal microcavities combined with plasmonic nano-antenna, whispering gallery mode microcavities combined with plasmonic nano-antenna, and Fabry–Perot microcavities with plasmonic nano-antenna. The physics and applications of each hybrid photonic-plasmonic system are illustrated. The recent developments of topological photonic crystal microcavities and topological hybrid nano-cavities are also introduced, which demonstrates that topological microcavities can provide a robust platform for the realization of nanophotonic devices. This review can bring comprehensive physical insights of the hybrid system, and reveal that the hybrid system is a good platform for realizing strong light–matter interaction.
    Type of Medium: Online Resource
    ISSN: 1674-1056
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2412147-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Human Neuroscience Vol. 16 ( 2022-6-2)
    In: Frontiers in Human Neuroscience, Frontiers Media SA, Vol. 16 ( 2022-6-2)
    Abstract: Social interaction is a dynamic and variable process. However, most hyperscanning studies implicitly assume that inter-brain synchrony (IBS) is constant and rarely investigate the temporal variability of the multi-brain networks. In this study, we used sliding windows and k-mean clustering to obtain a set of representative inter-brain network states during different group communication tasks. By calculating the network parameters and temporal occurrence of the inter-brain states, we found that dense efficient interbrain states and sparse inefficient interbrain states appeared alternately and periodically, and the occurrence of efficient interbrain states was positively correlated with collaborative behaviors and group performance. Moreover, compared to common communication, the occurrence of efficient interbrain states and state transitions were significantly higher during creative communication, indicating a more active and intertwined neural network. These findings may indicate that there is a close correspondence between inter-brain network states and social behaviors, contributing to the flourishing literature on group communication.
    Type of Medium: Online Resource
    ISSN: 1662-5161
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2425477-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Physics Vol. 11 ( 2023-2-20)
    In: Frontiers in Physics, Frontiers Media SA, Vol. 11 ( 2023-2-20)
    Abstract: Valley photonic crystals (PCs) play a crucial role in controlling light flow and realizing robust nanophotonic devices. In this study, rotated gradient valley PCs are proposed to realize topological rainbow trapping. A topological rainbow is observed despite the presence of pillars of different shapes, which indicates the remarkable universality of the design. Then, the loss is introduced to explore the topological rainbow trapping of the non-Hermitian valley PC. For the step-angle structure, the same or different losses can be applied, which does not affect the formed topological rainbow trapping. For a single-angle structure, the applied progressive loss can also achieve rainbow trapping. The rainbow is robust and topologically protected in both Hermitian and non-Hermitian cases, which is confirmed by the introduction of perturbations and defects. The proposed method in the current study presents an intriguing step for light control and potential applications in optical buffering and frequency routing.
    Type of Medium: Online Resource
    ISSN: 2296-424X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2721033-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...