GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Astronomical Society  (5)
  • Wang, Ping  (5)
  • Unknown  (5)
Material
Publisher
  • American Astronomical Society  (5)
Language
  • Unknown  (5)
Years
Subjects(RVK)
  • 1
    In: The Astrophysical Journal, American Astronomical Society, Vol. 935, No. 1 ( 2022-08-01), p. 10-
    Abstract: One month after launching the Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor, a bright thermonuclear X-ray burst from 4U 0614+09 was observed on 2021 January 24. We report the time-resolved spectroscopy of the burst and a hint of burst oscillation at 413 Hz with a fractional amplitude ∼2.0% (rms). This coincides with the burst oscillation previously discovered with Swift/Burst Alert Telescope (Strohmayer et al. 2008), and therefore supports the spin frequency of this source. This burst is a bright one in the normal bursts detected from 4U 0614+09, which leads to an upper limit of distance estimation of 3.1 kpc. The folded light curve during the burst oscillation shows a sinusoidal structure, which is consistent with previous observations.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Supplement Series Vol. 265, No. 1 ( 2023-03-01), p. 17-
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 265, No. 1 ( 2023-03-01), p. 17-
    Abstract: The Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is a pair of microsatellites (i.e., GECAM-A and GECAM-B) dedicated to monitoring gamma-ray transients including the high-energy electromagnetic counterparts of gravitational waves, such as gamma-ray bursts, soft gamma-ray repeaters, solar flares, and terrestrial gamma-ray flashes. Since launch in 2020 December, GECAM-B has detected hundreds of astronomical and terrestrial events. For these bursts, localization is the key for burst identification and classification as well as follow-up observations in multiple wavelengths. Here, we propose a Bayesian localization method with Poisson data with Gaussian background profile likelihood to localize GECAM bursts based on the distribution of burst counts in detectors with different orientations. We demonstrate that this method can work well for all kinds of bursts, especially extremely short ones. In addition, we propose a new method to estimate the systematic error of localization based on a confidence level test, which can overcome some problems of the existing method in the literature. We validate this method by Monte Carlo simulations, and then apply it to a burst sample with accurate location and find that the mean value of the systematic error of GECAM-B localization is ∼2.°5. By considering this systematic error, we can obtain a reliable localization probability map for GECAM bursts. Our methods can be applied to other gamma-ray monitors.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Astronomical Society ; 2022
    In:  The Astrophysical Journal Supplement Series Vol. 260, No. 2 ( 2022-06-01), p. 24-
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 260, No. 2 ( 2022-06-01), p. 24-
    Abstract: Magnetars are neutron stars with an extreme magnetic field and sometimes manifest as soft gamma-ray repeaters (SGRs). SGR J1935+2154 is one of the most prolific bursters and the first confirmed source of a fast radio burst (FRB; i.e., FRB 200428). Encouraged by the discovery of the first X-ray counterpart of FRBs, the Insight-Hard X-ray Modulation Telescope (Insight-HXMT) implemented a dedicated 33-day-long Target of Opportunity observation of SGR J1935+2154 since 2020 April 28. With the HE, ME, and LE telescopes, Insight-HXMT provides a thorough monitoring of burst activity evolution of SGR J1935+2154, in a very broad energy range (1–250 keV) with high temporal resolution and high sensitivity, resulting in a unique valuable data set for detailed studies of SGR J1935+2154. In this work, we conduct a comprehensive analysis of this observation, including detailed burst search, identification, and temporal analyses. After carefully removing false triggers, we find a total of 75 bursts from SGR J1935+2154, out of which 70 are single pulsed. The maximum burst rate is about 56 bursts day −1 . Both the burst duration and the waiting time between two successive bursts follow lognormal distributions, consistent with previous studies. We also find that bursts with longer duration (some are multipulsed) tend to occur during the period with relatively high burst rate. There is no correlation between the waiting time and the fluence or duration of either the former or latter burst. It also seems that there is no correlation between burst duration and hardness ratio, in contrast to some previous reports. In addition, we do not find any X-ray burst associated with any reported radio bursts except for FRB 200428.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 260, No. 2 ( 2022-06-01), p. 25-
    Abstract: Since 2020 April 28, Insight-HXMT has implemented a dedicated observation on the magnetar SGR J1935+2154. Thanks to the wide energy band (1–250 keV) and high sensitivity of Insight-HXMT, we obtained 75 bursts from SGR J1935+2154 during a month-long activity episode after the emission of FRB 200428. Here we report the detailed time-integrated spectral analysis of these bursts and the statistical distribution of the spectral parameters. We find that for ∼15% (11/75) of SGR J1935+2154 bursts, the CPL model is preferred, and most of them occurred in the later part of this active epoch. In the cumulative fluence distribution, we find that the fluence of bursts in our sample is about an order of magnitude weaker than that of Fermi/GBM, but it follows the same power-law distribution. Finally, we find a burst with similar peak energy to the time-integrated spectrum of the X-ray burst associated with FRB 200428 (FRB 200428-Associated Burst), but the low energy index is harder.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Astrophysical Journal, American Astronomical Society, Vol. 922, No. 2 ( 2021-12-01), p. 237-
    Abstract: The Chinese CubeSat Mission, Gamma Ray Integrated Detectors (GRID), recently detected its first gamma-ray burst, GRB 210121A, which was jointly observed by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM). This burst is confirmed by several other missions, including Fermi and Insight-HXMT. We combined multimission observational data and performed a comprehensive analysis of the burst’s temporal and spectral properties. Our results show that the burst is relatively special in its high peak energy, thermal-like low-energy indices, and large fluence. By putting it to the E p – E γ ,iso relation diagram with assumed distance, we found that this burst can be constrained at the redshift range of [0.3, 3.0]. The thermal spectral component is also confirmed by the direct fit of the physical models to the observed spectra. Interestingly, the physical photosphere model also constrained a redshift of z ∼ 0.3 for this burst, which helps us to identify a host galaxy candidate at such a distance within the location error box. Assuming that the host galaxy is real, we found that the burst can be best explained by the photosphere emission of a typical fireball with an initial radius of r 0 ∼ 3.2 × 10 7 cm.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...