GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wang, Peng  (365)
  • Unknown  (365)
Material
Language
  • Unknown  (365)
Years
  • 1
    In: Research in Astronomy and Astrophysics, IOP Publishing, Vol. 19, No. 11 ( 2019-11-01), p. 159-
    Abstract: As one of the three payloads for the Advanced Space-based Solar Observatory (ASO-S) mission, the Lyman-alpha (Ly α ) Solar Telescope (LST) is composed of three instruments: a Solar Corona Imager (SCI), a Ly α Solar Disk Imager (SDI) and a full-disk White-light Solar Telescope (WST). When working in-orbit, LST will simultaneously perform high-resolution imaging observations of all regions from the solar disk to the inner corona up to 2.5 R ⊙ (R ⊙ stands for the mean solar radius) with a spatial resolution of 4.8″ and 1.2″ for coronal and disk observations, respectively, and a temporal resolution of 30 – 120 s and 1 – 120 s for coronal and disk observations, respectively. The maximum exposure time can be up to 20 s due to precise pointing and image stabilization function. Among the three telescopes of LST, SCI is a dual-waveband coronagraph simultaneously and independently observing the inner corona in the HI Ly α (121.6±10 nm) line and white light (WL) (700±40 nm) wavebands by using a narrowband Ly α beam splitter and has a field of view (FOV) from 1.1 to 2.5 R ⊙ . The stray-light suppression level can attain 〈 10 −6 B ⊙ (B ⊙ is the mean brightness of the solar disk) at 1.1 R ⊙ and ≤5×10 −8 B ⊙ at 2.5 R ⊙ . SDI and WST are solar disk imagers working in the Ly α line and 360.0 nm wavebands, respectively, which adopt an off-axis two-mirror reflective structure with an FOV up to 1.2 R ⊙ , covering the inner coronal edge area and relating to coronal imaging. We present the up-to-date design for the LST payload.
    Type of Medium: Online Resource
    ISSN: 1674-4527
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2511247-8
    SSG: 6,25
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Annals of Palliative Medicine, AME Publishing Company, Vol. 10, No. 2 ( 2021-2), p. 2062-2071
    Type of Medium: Online Resource
    ISSN: 2224-5820 , 2224-5839
    Language: Unknown
    Publisher: AME Publishing Company
    Publication Date: 2021
    detail.hit.zdb_id: 2828544-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Annals of Palliative Medicine, AME Publishing Company, Vol. 10, No. 1 ( 2021-1), p. 572-583
    Type of Medium: Online Resource
    ISSN: 2224-5820 , 2224-5839
    Language: Unknown
    Publisher: AME Publishing Company
    Publication Date: 2021
    detail.hit.zdb_id: 2828544-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Oncology Vol. 11 ( 2021-11-18)
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 11 ( 2021-11-18)
    Abstract: To evaluate the performance of 2D and 3D radiomics features with different machine learning approaches to classify SPLs based on magnetic resonance(MR) T2 weighted imaging (T2WI). Material and Methods A total of 132 patients with pathologically confirmed SPLs were examined and randomly divided into training (n = 92) and test datasets (n = 40). A total of 1692 3D and 1231 2D radiomics features per patient were extracted. Both radiomics features and clinical data were evaluated. A total of 1260 classification models, comprising 3 normalization methods, 2 dimension reduction algorithms, 3 feature selection methods, and 10 classifiers with 7 different feature numbers (confined to 3–9), were compared. The ten-fold cross-validation on the training dataset was applied to choose the candidate final model. The area under the receiver operating characteristic curve (AUC), precision-recall plot, and Matthews Correlation Coefficient were used to evaluate the performance of machine learning approaches. Results The 3D features were significantly superior to 2D features, showing much more machine learning combinations with AUC greater than 0.7 in both validation and test groups (129 vs. 11). The feature selection method Analysis of Variance(ANOVA), Recursive Feature Elimination(RFE) and the classifier Logistic Regression(LR), Linear Discriminant Analysis(LDA), Support Vector Machine(SVM), Gaussian Process(GP) had relatively better performance. The best performance of 3D radiomics features in the test dataset (AUC = 0.824, AUC-PR = 0.927, MCC = 0.514) was higher than that of 2D features (AUC = 0.740, AUC-PR = 0.846, MCC = 0.404). The joint 3D and 2D features (AUC=0.813, AUC-PR = 0.926, MCC = 0.563) showed similar results as 3D features. Incorporating clinical features with 3D and 2D radiomics features slightly improved the AUC to 0.836 (AUC-PR = 0.918, MCC = 0.620) and 0.780 (AUC-PR = 0.900, MCC = 0.574), respectively. Conclusions After algorithm optimization, 2D feature-based radiomics models yield favorable results in differentiating malignant and benign SPLs, but 3D features are still preferred because of the availability of more machine learning algorithmic combinations with better performance. Feature selection methods ANOVA and RFE, and classifier LR, LDA, SVM and GP are more likely to demonstrate better diagnostic performance for 3D features in the current study.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Bioengineering and Biotechnology Vol. 9 ( 2022-1-11)
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 9 ( 2022-1-11)
    Abstract: The overuse of chemical fertilizers has resulted in the degradation of the physicochemical properties and negative changes in the microbial profiles of agricultural soil. These changes have disequilibrated the balance in agricultural ecology, which has resulted in overloaded land with low fertility and planting obstacles. To protect the agricultural soil from the effects of unsustainable fertilization strategies, experiments of the reduction of nitrogen fertilization at 10, 20, and 30% were implemented. In this study, the bacterial responses to the reduction of nitrogen fertilizer were investigated. The bacterial communities of the fertilizer-reducing treatments (D10F, D20F, and D30F) were different from those of the control group (CK). The alpha diversity was significantly increased in D20F compared to that of the CK. The analysis of beta diversity revealed variation of the bacterial communities between fertilizer-reducing treatments and CK, when the clusters of D10F, D20F, and D30F were separated. Chemical fertilizers played dominant roles in changing the bacterial community of D20F. Meanwhile, pH, soil organic matter, and six enzymes (soil sucrase, catalase, polyphenol oxidase, urease, acid phosphatase, and nitrite reductase) were responsible for the variation of the bacterial communities in fertilizer-reducing treatments. Moreover, four of the top 20 genera (unidentified JG30-KF-AS9, JG30-KF-CM45, Streptomyces , and Elsterales ) were considered as key bacteria, which contributed to the variation of bacterial communities between fertilizer-reducing treatments and CK. These findings provide a theoretical basis for a fertilizer-reducing strategy in sustainable agriculture, and potentially contribute to the utilization of agricultural resources through screening plant beneficial bacteria from native low-fertility soil.
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2719493-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Oncology Vol. 12 ( 2022-11-23)
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-11-23)
    Abstract: Clinical treatment of RAS mutant cancers is challenging because of the complexity of the Ras signaling pathway. SLC7A5 is a newly discovered downstream gene of the Ras signaling pathway, but the regulatory mechanism is unclear. We aimed to explore the molecular mechanism and role in KRAS mutant lung adenocarcinoma progression. Methods Key gene that regulated SLC7A5 in KRAS mutant lung adenocarcinoma was screened by RNA sequencing and bioinformatics analysis. The effect of this gene on the expression of SLC7A5 was studied by RNAi. The regulatory mechanism between the two genes was investigated by immunofluorescence, CoIP, pulldown and yeast two-hybrid assays. The location of the two genes was determined by inhibiting Ras and the downstream pathways PI3K-AKT and MEK-ERK. By in vivo and in vitro experiments, the effects of the key gene on the biological functions of KRAS mutant lung adenocarcinoma were explored. Results We found a novel gene, ZNF24, which upregulated SLC7A5 protein expression rather than mRNA expression in KRAS mutant lung adenocarcinoma. Endogenous protein interactions occurred between ZNF24 and SLC7A5. Ras inhibition reduced the expression of ZNF24 and SLC7A5. ZNF24 and SLC7A5 are located downstream of the MEK-ERK and PI3K-AKT pathways. In vivo and in vitro functional experiments confirmed that the ZNF24-SLC7A5 signaling axis promoted the proliferation, invasion and migration of KRAS mutant lung adenocarcinoma. Conclusions ZNF24 promoted the growth of KRAS mutant lung adenocarcinoma by upregulating SLC7A5 protein expression, which suggested that ZNF24 is a new biomarker of KRAS mutant tumors and could be a new potential therapeutic target for Ras-driven tumors.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Turkish Neurosurgery, Turkish Neurosurgical Society, ( 2021)
    Type of Medium: Online Resource
    ISSN: 1019-5149
    Language: Unknown
    Publisher: Turkish Neurosurgical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2433666-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2019
    In:  Open Life Sciences Vol. 14, No. 1 ( 2019-07-10), p. 262-274
    In: Open Life Sciences, Walter de Gruyter GmbH, Vol. 14, No. 1 ( 2019-07-10), p. 262-274
    Abstract: Mitochondrial homeostasis is vital for the progression of lung cancer. Nurr1 has been identified as a novel mediator of mitochondrial homeostasis in several types of cancers. The aim of our study was to investigate whether Nurr1 modulates the viability of A549 lung cancer cells by inducing mitochondrial dysfunction, with a focus on the p53-Drp1 signaling pathway. Methods western blotting, ELISA and immunofluorescence assay was used to verify the alterations of cell death. siRNA was used to determine the role of p53-Drp1 pathway in lung cancer death. Results Nurr1 was downregulated in A549 lung cancer cells compared to normal pulmonary epithelial cells. Interestingly, overexpression of Nurr1 reduced the viability of A549 lung cancer cells by activating apoptosis and mitochondrial stress. At the molecular level, we provide data to support the regulatory effects of Nurr1 on the p53-Drp1 signaling pathway. Blockade of the p53-Drp1 signaling pathway abolished the proapoptotic action of Nurr1 on A549 cells and sustained mitochondrial homeostasis. Conclusion Taken together, our results depict the tumor-suppressive role played by Nurr1 in A549 lung cancer in vitro and show that the anticancer effects of Nurr1 are executed via triggering of mitochondrial dysfunction and activation of the p53-Drp1 signaling pathway.
    Type of Medium: Online Resource
    ISSN: 2391-5412
    Language: Unknown
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2817958-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 11 ( 2023-5-12)
    Abstract: Objective: We investigated the expression of miRNA-214 in human osteoporotic bone tissue and tested the utility of adeno-associated virus (AAV) expressing a miRNA-214 inhibitor in terms of preventing local osteoporosis of the femoral condyle in a rat model of osteoporosis. Methods: (1) Femoral heads of patients who underwent hip replacements at our hospital because of femoral neck fractures were collected and divided into osteoporosis and non-osteoporosis groups based on preoperative bone mineral density data. MiRNA-214 expression was detected in bone tissues exhibiting obvious bone microstructural changes in the two groups. (2) A total of 144 SD female rats were divided into four groups: the Control, Model, Negative control (Model + AAV), and Experimental (Model + anti-miRNA-214) groups. AAV-anti-miRNA-214 was injected locally into the rat femoral condyles; we explored whether this prevented or treated local osteoporosis. Results: (1) MiRNA-214 expression in the human femoral head was significantly increased in the osteoporosis group. (2) Compared to the Model and Model + AAV groups, the bone mineral density (BMD) and femoral condyle bone volume/tissue volume (BV/TV) ratio in the Model + anti-miRNA-214 group were significantly higher; in addition, the number (TB.N) and thickness (TB.Th) of the trabecular bones were increased (all p & lt; 0.05). MiRNA-214 expression in the femoral condyles of the Model + anti-miRNA-214 group was significantly higher than that in the other groups. The expression levels of the osteogenesis-related genes Alp , Bglap , and Col1α1 increased, while those of the osteoclast-related genes NFATc1 , Acp5 , Ctsk , Mmp9 , and Clcn7 decreased. Conclusion: AAV-anti-miRNA-214 promoted osteoblast activity and inhibited osteoclast activity in the femoral condyles of osteoporotic rats, improving bone metabolism and slowing osteoporosis progression.
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2719493-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Frontiers in Cellular Neuroscience, Frontiers Media SA, Vol. 16 ( 2022-12-1)
    Abstract: Seizures in rodent models that are induced by lithium-pilocarpine mimic human seizures in a highly isomorphic manner. The hippocampus is a brain region that generates and spreads seizures. In order to understand the early phases of seizure events occurring in the hippocampus, global protein expression levels in the hippocampus on day 1 and day 3 were analyzed in lithium-pilocarpine induced acute epileptic rat models using a tandem mass tag-based proteomic approach. Our results showed that differentially expressed proteins were likely to be enhanced rather than prohibited in modulating seizure activity on days 1 and 3 in lithium-pilocarpine induced seizure rats. The differentially regulated proteins differed on days 1 and 3 in the seizure rats, indicating that different molecules and pathways are involved in seizure events occurring from day 1 to day 3 following lithium-pilocarpine administration. In regard to subcellular distribution, the results suggest that post-seizure cellular function in the hippocampus is possibly regulated in a differential manner on seizure progression. Gene ontology annotation results showed that, on day 1 following lithium-pilocarpine administration, it is likely necessary to regulate macromolecular complex assembly, and cell death, while on day 3, it may be necessary to modulate protein metabolic process, cytoplasm, and protein binding. Protein metabolic process rather than macromolecular complex assembly and cell death were affected on day 3 following lithium-pilocarpine administration. The extracellular matrix, receptors, and the constitution of plasma membranes were altered most strongly in the development of seizure events. In a KEGG pathway enrichment cluster analysis, the signaling pathways identified were relevant to sustained angiogenesis and evading apoptosis, and complement and coagulation cascades. On day 3, pathways relevant to Huntington’s disease, and tumor necrosis factor signaling were most prevalent. These results suggest that seizure events occurring in day 1 modulate macromolecular complex assembly and cell death, and in day 3 modulate biological protein metabolic process. In summary, our study found limited evidence for ongoing seizure events in the hippocampus of lithium-pilocarpine induced animal models; nevertheless, evaluating the global differential expression of proteins and their impacts on bio-function may offer new perspectives for studying epileptogenesis in the future.
    Type of Medium: Online Resource
    ISSN: 1662-5102
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2452963-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...