GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pak, Gyundo  (2)
  • Unknown  (2)
Material
Publisher
Language
  • Unknown  (2)
Years
  • 1
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-8-8)
    Abstract: During July of 2021, the sea surface temperature of the mid-latitude western North Pacific had increased by five degrees over 10 days. This high temperature was maintained for approximately a month before it disappeared rapidly in approximately five days. The underlying mechanisms of this unprecedented marine heatwave event have not yet been researched through a quantitative approach. The development and decay processes of the marine heatwave event were investigated using heat budget analysis and one-dimensional modeling. In mid-July, an anomalous high-pressure atmospheric circulation, affecting to the reduced cloud coverage and increased solar radiation, anchored where the marine heatwave occurred. The increased solar radiation accompanied by the weakened wind reduced the vertical mixing and resulted in a thinner mixed-layer, which accelerated the sea surface warming. The impact of reduced mixing is as important as the increase in solar radiation. In mid-August, typhoon-induced entrainment mainly caused sea surface cooling. The wind-driven mechanical mixing between warm surface water and cooler subsurface water lowered the SST. Additionally, evaporative cooling by strong winds, which drives buoyancy-driven vertical mixing, contributed to the decay of the MHW. The effect of mechanical mixing on cooling is comparable to that of buoyancy-driven mixing.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 10 ( 2023-2-23)
    Abstract: The impacts of observation data sets on the high-resolution (1/24°) Northwest Pacific prediction system were investigated with the model sensitivity tests. We compared the model experiments assimilating the different combinations of the observation data sets, such as the sea surface height derived from satellite altimetry, sea surface temperature, and in-situ profiles, based on the Ensemble Optimal Interpolation. Pseudo-profiles constructed by the method of Cooper and Haines (1996, CH96) were assimilated into the model to assimilate sea surface height data. CH96 applied a conservation principle to derive pseudo-profiles by rearranging preexisting profiles. The comparison of the model experiments suggests that each observation data set enhances the model performance. Especially, the assimilation of the sea surface height reduces the model error by more than 9.81% and 6.44%, respectively, in terms of the root-mean-square error of the ocean temperature and salinity in the subsurface layer. It is interesting that the assimilation of the in-situ temperature profiles in the Korean marginal seas contributes to improving the reproducibility of the subsurface temperature and salinity in the East/Japan Sea (EJS) as well as Kuroshio-Kuroshio Extension (K-KE) regions. The improvement in the K-KE region seems to be related to the reproducibility of the Kuroshio axis. As the water mass in the EJS flows into the Pacific Ocean through the Tsugaru Strait, it affects the front of the Sanriku confluence, and it seems to eventually control the Oyashio Current and Kuroshio axis. In conclusion, this study evaluated the contribution of each observation component to ocean analysis in the KOOS-OPEM and confirmed the role of the existing observation networks. This study also suggests that greater attention should be paid to the role of regional ocean observation networks to improve the forecast skill of the ocean prediction system not only in the region but also in the open ocean, such as the Pacific Ocean.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...