GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Li, Moli  (3)
  • Unknown  (3)
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 8 ( 2022-1-25)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2022-1-25)
    Abstract: Dwarf surf clam, Mulinia lateralis , is widely considered as a model species for bivalves. The development of a standard culture system could greatly promote the production of high-quality individuals, yet information on the culture conditions for M. lateralis spat is still limited. This study aims to determine the suitable microalgae diet, temperature, and salinity for M. lateralis spat culture. The typically fed microalgae species, including Chlorella pyrenoidesa (Cp), Platymonas helgolandica (Ph), Dunaliella salina (Ds), Nitzschia closterium (Nc), and Chaetoceros muelleri (Cm), could be taken up by M. lateralis spat, and their filtration rates on Cp, Nc, and Cm were higher than those on Ds and Ph. For the entire spat culture, all diet trials showed similar survival percentages, while the mono-specific diet Cp exhibited the highest growth rate, suggesting that Cp was the optimal microalgae species for M. lateralis spat. Through simultaneously maximizing the growth and survival of spat, the optimal microalgae concentration and stocking density were 5 × 10 4 cells ml –1 and 400–600 individuals m –2 for 30–40-day-old spat as well as 1 × 10 5 cells ml –1 and 400–600 individuals m –2 for 40–50-day-old spat, respectively. In addition, the spat had higher growth rates and survival percentages at the temperature of 20–22°C and salinity of 22–25 ppt. The results of this study provide a basis for further culture of M. lateralis spat, and the optimized conditions will be of great significance for the construction of the standard culture system of M. lateralis .
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Marine Science Vol. 9 ( 2023-1-18)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2023-1-18)
    Abstract: Mollusca is the second largest animal phylum and represents one of the most evolutionarily successful animal groups. Mulinia lateralis , a small bivalve, is a promising model organism to facilitate studies of mollusc development. However, because of the lack of published genomic and transcriptomic resources, integrated research on the formation of larval shells in this species, which is a representative developmental process of molluscs and of great importance for larva survival, is hindered. In this study, the blastula, gastrula, trochophore larva, and D-shaped larva of M. lateralis were utilized for generating a comprehensive full-length transcriptome through Pacific BioSciences (PacBio) isoform sequencing (Iso-seq) and Illumina RNA-Seq. A total of 238,919 full-length transcripts with an average length of 3,267 bp and 121,424 annotated genes were obtained. Illumina RNA-Seq data analysis showed that 4,512, 10,637, and 17,829 differentially expressed genes (DEGs) were obtained between the two adjacent developmental stages. Functional annotation and enrichment analysis revealed the specific function of genes in shell biomineralization during different developmental stages. Twelve genes that may be involved in the formation of the larval shell of M. lateralis were identified, including insoluble shell matrix protein-encoding gene 1 ( ISMP1 ), ISMP2 , ISMP5 , chitin synthase , tyrosinase , chitin-binding protein , collagen and pu14 involved in shell matrix deposition, and carbonic anhydrase , solute carrier family 4 member 8 ( slc4a8 ), EF-hand , and a calmodulin coding gene C-2442 participated in ion transportation. In addition, calcium ion binding function, calcium signaling pathway, and endocrine and other factor-regulated calcium reabsorption pathways were significantly enriched. Weighted gene correlation network analysis (WGCNA) identified two modules related to biomineralization and larval shell formation, and slc4a8 and ring finger protein 41 ( rnf41 ) were key hub genes that may be involved in this process. Moreover, it could be implied that the process of ion transport occurs earlier than the deposition of the shell matrix. This work provided a clear view of the transcriptome for M. lateralis and will be valuable in elucidating the mechanisms of larval shell formation as well as other developmental processes in molluscs.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Marine Science Vol. 10 ( 2023-5-22)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 10 ( 2023-5-22)
    Abstract: Carotenoids are essential nutrients for humans and animals, and carotenoid content has become an important trait to evaluate the nutritional value of many cultured animals. Marine animals provide humans with diverse carotenoids, and developing carotenoid-enriched varieties has been the focus of marine animal breeding. Understanding the molecular mechanism of carotenoid deposition could benefit marine animal breeding for carotenoid content improvement. In the present study, transcriptomic analysis of adductor muscle was performed between Yesso scallop ( Patinopecten yessoensis ) with white muscle (WM) and carotenoid-enriched orange muscle (OM). A total of 683 differentially expressed genes (DEGs) were identified, with 302 and 381 genes being up- and down-regulated in OM scallop. Gene co-expression network analysis identified four carotenoid accumulation−related modules, including three up-regulated modules and one down-regulated module. The genes in up-regulated modules mainly participate in the pathways of translation and transcription (MEgreen), immune system (MElightyellow), and lipid metabolism (MEpink), while the down-regulated module is mainly enriched with genes involved in various metabolic pathways (MEturquoise). As the causal gene responsible for muscle coloration in scallop, PyBCO-like 1 is the hub gene of MEturquoise and showed strong connectivity with NR2F1A , a transcriptional factor involved in the regulation of retinoic acid. In addition, the up-regulated DEGs, including WDR3 , RPP29 , TBL3 , RIOK2 , and NOB1 from “ribosome biogenesis”, HSP70 s and HSP702B s from “antigen processing and presentation”, and ACOX1 from “PPAR signaling pathway” were identified as hub genes, indicating the potential regulatory role of these genes and pathways in response to carotenoid accumulation. Our data contribute to a deeper understanding of the regulatory and response mechanisms of carotenoid accumulation in marine animals.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...