GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Koda, Masao  (3)
  • Takahashi, Kazuhisa  (3)
  • Unknown  (3)
  • 1
    In: Journal of Neurosurgery: Spine, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 15, No. 6 ( 2011-12), p. 582-593
    Abstract: Clinical use of autologous induced pluripotent stem cells (iPSCs) could circumvent immune rejection and bioethical issues associated with embryonic stem cells. Spinal cord injury (SCI) is a devastating trauma with long-lasting disability, and current therapeutic approaches are not satisfactory. In the present study, the authors used the neural stem sphere (NSS) method to differentiate iPSCs into astrocytes, which were evaluated after their transplantation into injured rat spinal cords. Methods Induced pluripotent stem cell–derived astrocytes were differentiated using the NSS method and injected 3 and 7 days after spinal contusion–based SCI. Control rats were injected with DMEM in the same manner. Locomotor recovery was assessed for 8 weeks, and sensory and locomotion tests were evaluated at 8 weeks. Immunohistological parameters were then assessed. Results Transplant recipients lived for 8 weeks without tumor formation. Transplanted cells stretched their processes along the longitudinal axis, but they did not merge with the processes of host GFAP-positive astrocytes. Locomotion was assessed in 3 ways, but none of the tests detected statistically significant improvements compared with DMEM-treated control rats after 8 weeks. Rather, iPSC transplantation caused even greater sensitivity to mechanical stimulus than DMEM treatment. Conclusions Astrocytes can be generated by serum treatment of NSS-generated cells derived from iPSCs. However, transplantation of such cells is poorly suited for repairing SCI.
    Type of Medium: Online Resource
    ISSN: 1547-5654
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2011
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Neurosurgery: Spine, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 27, No. 4 ( 2017-10), p. 415-420
    Abstract: Fusion surgery with instrumentation is a widely accepted treatment for cervical spine pathologies. The authors propose a novel technique for subaxial cervical fusion surgery using paravertebral foramen screws (PVFS). The authors consider that PVFS have equal or greater biomechanical strength than lateral mass screws (LMS). The authors’ goals of this study were to conduct a biomechanical study of PVFS, to investigate the suitability of PVFS as salvage fixation for failed LMS, and to describe this novel technique. METHODS The authors harvested 24 human cervical spine vertebrae (C3–6) from 6 fresh-frozen cadaver specimens from donors whose mean age was 84.3 ± 10.4 years at death. For each vertebra, one side was chosen randomly for PVFS and the other for LMS. For PVFS, a 3.2-mm drill with a stopper was advanced under lateral fluoroscopic imaging. The drill stopper was set to 12 mm, which was considered sufficiently short not to breach the transverse foramen. The drill was directed from 20° to 25° medially so that the screw could purchase the relatively hard cancellous bone around the entry zone of the pedicle. The hole was tapped and a 4.5-mm-diameter × 12-mm screw was inserted. For LMS, 3.5-mm-diameter × 14-mm screws were inserted into the lateral mass of C3–6. The pullout strength of each screw was measured. After pullout testing of LMS, a drill was inserted into the screw hole and the superior cortex of the lateral mass was pried to cause a fracture through the screw hole, simulating intraoperative fracture of the lateral mass. After the procedure, PVFS for salvage (sPVFS) were inserted on the same side and pullout strength was measured. RESULTS The CT scans obtained after screw insertion revealed no sign of pedicle breaching, violation of the transverse foramen, or fracture of the lateral mass. A total of 69 screws were tested (23 PVFS, 23 LMS, and 23 sPVFS). One vertebra was not used because of a fracture that occurred while the specimen was prepared. The mean bone mineral density of the specimens was 0.29 ± 0.10 g/cm 3 . The mean pullout strength was 234 ± 114 N for PVFS, 158 ± 91 N for LMS, and 195 ± 125 N for sPVFS. The pullout strength for PVFS tended to be greater than that for LMS. However, the difference was not quite significant (p = 0.06). CONCLUSIONS The authors introduce a novel fixation technique for the subaxial cervical spine. This study suggests that PVFS tend to provide stronger fixation than LMS for initial applications and fixation equal to LMS for salvage applications. If placement of LMS fails, PVFS can serve as a salvage fixation technique.
    Type of Medium: Online Resource
    ISSN: 1547-5654
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Neurosurgery: Spine, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 30, No. 4 ( 2019-04), p. 461-469
    Abstract: The purpose of this study was to determine the relationship between vertebral bodies, psoas major morphology, and the course of lumbar nerve tracts using diffusion tensor imaging (DTI) before lateral interbody fusion (LIF) to treat spinal deformities. METHODS DTI findings in a group of 12 patients (all women, mean age 74.3 years) with degenerative lumbar scoliosis (DLS) were compared with those obtained in a matched control group of 10 patients (all women, mean age 69.8 years) with low-back pain but without scoliosis. A T2-weighted sagittal view was fused to tractography from L3 to L5 and separated into 6 zones (zone A, zones 1–4, and zone P) comprising equal quarters of the anteroposterior diameters, and anterior and posterior to the vertebral body, to determine the distribution of nerves at various intervertebral levels (L3–4, L4–5, and L5–S1). To determine psoas morphology, the authors examined images for a rising psoas sign at the level of L4–5, and the ratio of the anteroposterior diameter (AP) to the lateral diameter (lat), or AP/lat ratio, was calculated. They assessed the relationship between apical vertebrae, psoas major morphology, and the course of nerve tracts. RESULTS Although only 30% of patients in the control group showed a rising psoas sign, it was present in 100% of those in the DLS group. The psoas major was significantly extended on the concave side (AP/lat ratio: 2.1 concave side, 1.2 convex side). In 75% of patients in the DLS group, the apex of the curve was at L2 or higher (upper apex) and the psoas major was extended on the concave side. In the remaining 25%, the apex was at L3 or lower (lower apex) and the psoas major was extended on the convex side. Significant anterior shifts of lumbar nerves compared with controls were noted at each intervertebral level in patients with DLS. Nerves on the extended side of the psoas major were significantly shifted anteriorly. Nerve pathways on the convex side of the scoliotic curve were shifted posteriorly. CONCLUSIONS A significant anterior shift of lumbar nerves was noted at all intervertebral levels in patients with DLS in comparison with findings in controls. On the convex side, the nerves showed a posterior shift. In LIF, a convex approach is relatively safer than an approach from the concave side. Lumbar nerve course tracking with DTI is useful for assessing patients with DLS before LIF.
    Type of Medium: Online Resource
    ISSN: 1547-5654
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...