GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2008
    In:  Journal of Neurosurgery: Pediatrics Vol. 1, No. 4 ( 2008-04), p. 296-304
    In: Journal of Neurosurgery: Pediatrics, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 1, No. 4 ( 2008-04), p. 296-304
    Abstract: Studies on the efficacy of arteriovenous malformation (AVM) radiosurgery have largely been conducted in the adult population. Clinically, the results may not always be applicable to pediatric patients. Moreover, studies involving the pediatric population have largely comprised small- ( 〈 3 cm 3 ) and medium-sized (3–10 cm 3 ) AVMs. For large ( 〉 10 cm 3 ) AVMs in children, sparse radiosurgical results are available. The current study was conducted to further clarify the role of radiosurgery in the treatment of pediatric AVMs. Methods A retrospective analysis was performed of data obtained in 105 pediatric patients ( 〈 18 years of age) with cerebral AVMs treated by Gamma Knife surgery (GKS) between 1993 and 2006. For statistical comparison the authors studied data acquired in 458 adult patients with AVMs treated during the same period. The patients underwent follow-up magnetic resonance imaging at 6-month intervals. Cerebral angiography was used to confirm the obliteration of the AVM. Results In pediatric patients, the AVM obliteration rate at 48 months after a primary GKS was 65%. Repeated GKS in those in whom primary treatments failed further ablated some AVMs, for an overall obliteration rate of 81%. The efficacy of GKS correlated with the size of the AVM: 91% for small, 86% for medium, and 64% for large AVMs. The treatments were associated with an 8% morbidity rate and 〈 1% mortality rate. Posttreatment hemorrhage occurred in 4 (4%) of 105 patients. Obliteration rates at 48 months of small and extremely large ( 〉 20 cm 3 ) AVMs were similar in the pediatric and adult groups, whereas AVMs between 3 and 10 cm 3 responded less efficaciously in children (p = 0.042). The AVMs with volumes ranging from 10 to 20 cm 3 were also associated with a lower obliteration rate in children at 48 months, but statistical significance was not reached (p = 0.279). Conclusions Gamma Knife surgery is an effective and safe treatment alternative for pediatric AVMs. The medium (3–10-cm 3 ) and large (10–20-cm 3 ) AVMs tend to respond less efficaciously than those of comparable size in adults.
    Type of Medium: Online Resource
    ISSN: 1933-0707 , 1933-0715
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2008
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 137, No. 2 ( 2022-08-01), p. 563-570
    Abstract: Whether combined radiation and tyrosine kinase inhibitor (TKI) therapy in non–small cell lung cancer (NSCLC) patients with brain metastases (BMs) and epidermal growth factor receptor (EGFR) mutations confers additional benefits over TKI therapy alone remains a matter of debate. The goal of this study was to compare outcomes between combined TKI therapy with stereotactic radiosurgery (SRS) versus TKI therapy alone in NSCLC patients with BMs and EGFR mutations. METHODS Consecutive cases of NSCLC patients with EGFR mutations and BMs treated with TKIs were selected for inclusion in this study. Patients were categorized into two groups based on SRS: TKI therapy alone (group I) and combined SRS and TKI therapy (group II). Patients who had SRS or TKI as salvage therapy and those with prior radiation treatment for BMs were excluded. Tumor control ( 〈 10% increase in tumor volume) and overall survival (OS) rates were compared using Kaplan-Meier analyses. Independent predictors of tumor control and OS were identified using multivariable Cox regression analyses. RESULTS The study cohort comprised 280 patients (n = 90 in group I and n = 190 in group II). Cumulative tumor control rates were higher in group II than in group I (79.8% vs 31.2% at 36 months, p 〈 0.0001). Cumulative OS rates were comparable between groups I and II (43.8% vs 59.4% at 36 months, p = 0.3203). Independent predictors of tumor control were older age (p 〈 0.01, HR 1.03), fewer BMs (p 〈 0.01, HR 1.09), lack of extracranial metastasis (p 〈 0.02, HR 0.70), and combined SRS and TKI therapy (p 〈 0.01, HR 0.25). Independent predictors of OS were fewer BMs (p 〈 0.01, HR 1.04) and a higher Karnofsky Performance Status score (p 〈 0.01, HR 0.97). CONCLUSIONS Although the OS rate did not differ between TKI therapy with and without SRS, the addition of SRS to TKI therapy resulted in improvement of intracranial tumor control. The lack of effect on survival rate with the addition of SRS may be attributable to extracranial disease progression. The addition of SRS to TKI therapy is recommended for intracranial disease control in NSCLC patients with BMs and EGFR mutations. Potential benefits may include prevention of neurological deficits and seizures. Future prospective studies may help clarify the clinical outcome benefits of SRS in these patients.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2022
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 133, No. 2 ( 2020-08), p. 313-320
    Abstract: The presence of epidermal growth factor receptor (EGFR) mutations in non–small cell lung cancer (NSCLC) has been associated with elevated radiosensitivity in vitro. However, results from clinical studies on radiosensitivity in cases of NSCLC with EGFR mutations are inconclusive. This paper presents a retrospective analysis of patients with NSCLC who underwent regular follow-up imaging after radiotherapy for brain metastases (BMs). The authors also investigated the influence of EGFR mutations on the efficacy of Gamma Knife radiosurgery (GKRS). METHODS This study included 264 patients (1069 BMs) who underwent GKRS treatment and for whom EGFR mutation status, demographics, performance status, and tumor characteristics were available. Radiological images were obtained at 3 months after GKRS and at 3-month intervals thereafter. Kaplan-Meier plots and Cox regression analysis were used to correlate EGFR mutation status and other clinical features with tumor control and overall survival. RESULTS The tumor control rates and overall 12-month survival rates were 87.8% and 65.5%, respectively. Tumor control rates in the EGFR mutant group versus the EGFR wild-type group were 90.5% versus 79.4% at 12 months and 75.0% versus 24.5% at 24 months. During the 2-year follow-up period after SRS, the intracranial response rate in the EGFR mutant group was approximately 3-fold higher than that in the wild-type group (p 〈 0.001). Cox regression multivariate analysis identified EGFR mutation status, extracranial metastasis, primary tumor control, and prescribed margin dose as predictors of tumor control (p = 0.004, p 〈 0.001, p = 0.004, and p = 0.026, respectively). Treatment with a combination of GKRS and tyrosine kinase inhibitors (TKIs) was the most important predictor of overall survival (p 〈 0.001). CONCLUSIONS The current study demonstrated that, among patients with NSCLC-BMs, EGFR mutations were independent prognostic factors of tumor control. It was also determined that a combination of GKRS and TKI had the most pronounced effect on prolonging survival after SRS. In select patient groups, treatment with SRS in conjunction with EGFR-TKIs provided effective tumor control for NSCLC-BMs.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2020
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 138, No. 1 ( 2023-01-01), p. 241-250
    Abstract: The goal of the study was to define and quantify brain arteriovenous malformation (bAVM) compactness and to assess its effect on outcomes after Gamma Knife radiosurgery (GKRS) for unruptured bAVMs. METHODS Unsupervised machine learning with fuzzy c-means clustering was used to differentiate the tissue constituents of bAVMs on T2-weighted MR images. The percentages of vessel, brain, and CSF were quantified. The proposed compactness index, defined as the ratio of vasculature tissue to brain tissue, categorized bAVM morphology into compact, intermediate, and diffuse types according to the tertiles of this index. The outcomes of interest were complete obliteration and radiation-induced changes (RICs). RESULTS A total of 209 unruptured bAVMs treated with GKRS were retrospectively included. The median imaging and clinical follow-up periods were 49.2 and 72.3 months, respectively. One hundred seventy-three bAVMs (82.8%) achieved complete obliteration after a median latency period of 43.3 months. The rates of RIC and permanent RIC were 76.1% and 3.8%, respectively. Post-GKRS hemorrhage occurred in 14 patients (6.7%), resulting in an annual bleeding risk of 1.0%. Compact bAVM, smaller bAVM volume, and exclusively superficial venous drainage were independent predictors of complete obliteration. Diffuse bAVM morphology, larger bAVM volume, and higher margin dose were independently associated with RICs. CONCLUSIONS The compactness index quantitatively describes the compactness of unruptured bAVMs. Moreover, compact bAVMs may have a higher obliteration rate and a smaller risk of RICs than diffuse bAVMs. This finding could help guide decision-making regarding GKRS treatment for patients with unruptured bAVMs.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2023
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2008
    In:  Journal of Neurosurgery Vol. 109, No. Supplement ( 2008-12), p. 65-72
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 109, No. Supplement ( 2008-12), p. 65-72
    Abstract: The effectiveness and safety of radiosurgery for small- to medium-sized cerebral arteriovenous malformations (AVMs) have been well established. However, the management for large cerebral AVMs remains a great challenge to neurosurgeons. In the past 5 years the authors performed preplanned staged radiosurgery to treat extra-large cerebral AVMs. Methods An extra-large cerebral AVM is defined as one with nidus volume 〉 40 ml. The nidus volume of cerebral AVM is measured from the dose plan—that is, as being the volume contained within the best-fit prescription isodose. From January 2003 to December 2007, the authors treated 6 patients with extra-large AVMs by preplanned staged GKS. Staged radiosurgery is implemented by rigid transformation with translation and rotation of coordinates between 2 stages. The average radiation-targeted volume was 60 ml (range 47–72 ml). The presenting symptoms were seizure in 4 patients and a bleeding episode in 2. One patient had undergone a previous craniotomy and evacuation of hematoma. The mean interval between the 2 radiosurgical sessions was 6.9 months (range 4.5–9.1 months). The prescribed marginal dose given to the nidus volume in each stage ranged from 16 to 18.6 Gy. The expected marginal dose of total nidus was 17–19 Gy. Regular follow-up MR imaging was performed every 6 months. The mean follow-up period was 28 months (range 12–54 months). Results Most of the patients exhibited clinical improvement: relief of headache and reduced frequency of seizure attack. All patients had significant regression of nidus observed on MR imaging follow-up. Two patients had angiogram-confirmed complete obliteration of the nidus 45 and 60 months after the second-stage radiosurgical session. One patient experienced minor bleeding 8 months after the second-stage radiosurgery with mild headache. She had satisfactory recovery without clinical neurological deficit after conservative treatment. Conclusions These preliminary results indicate that staged radiosurgery is a practical strategy to treat patients with extra-large cerebral AVMs. It takes longer to obliterate the AVMs. The observed high signal T2 changes after the radiosurgery appeared clinically insignificant in 6 patients followed up for an average of 28 months. Longer follow-up is necessary to confirm its long-term safety.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2008
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), ( 2021-10), p. 1-9
    Abstract: Gamma Knife radiosurgery (GKRS) is a common treatment modality for vestibular schwannoma (VS). The ability to predict treatment response is important in patient counseling and decision-making. The authors developed an algorithm that can automatically segment and differentiate cystic and solid tumor components of VS. They also investigated associations between the quantified radiological features of each component and tumor response after GKRS. METHODS This is a retrospective study comprising 323 patients with VS treated with GKRS. After preprocessing and generation of pretreatment T2-weighted (T2W)/T1-weighted with contrast (T1WC) images, the authors segmented VSs into cystic and solid components by using fuzzy C-means clustering. Quantitative radiological features of the entire tumor and its cystic and solid components were extracted. Linear regression models were implemented to correlate clinical variables and radiological features with the specific growth rate (SGR) of VS after GKRS. RESULTS A multivariable linear regression model of radiological features of the entire tumor demonstrated that a higher tumor mean signal intensity (SI) on T2W/T1WC images (p 〈 0.001) was associated with a lower SGR after GKRS. Similarly, a multivariable linear regression model using radiological features of cystic and solid tumor components demonstrated that a higher solid component mean SI (p = 0.039) and a higher cystic component mean SI (p = 0.004) on T2W/T1WC images were associated with a lower SGR after GKRS. A larger cystic component proportion (p = 0.085) was associated with a trend toward a lower SGR after GKRS. CONCLUSIONS Radiological features of VSs on pretreatment MRI that were quantified using fuzzy C-means were associated with tumor response after GKRS. Tumors with a higher tumor mean SI, a higher solid component mean SI, and a higher cystic component mean SI on T2W/T1WC images were more likely to regress in volume after GKRS. Those with a larger cystic component proportion also trended toward regression after GKRS. Further refinement of the algorithm may allow direct prediction of tumor response.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2021
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2006
    In:  Journal of Neurosurgery Vol. 105, No. Supplement ( 2006-12), p. 43-51
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 105, No. Supplement ( 2006-12), p. 43-51
    Abstract: The purpose of this study was to assess the efficacy and safety of Gamma Knife surgery (GKS) for the treatment of cavernous sinus dural arteriovenous fistulas (CSDAVFs) and other intracranial dural arteriovenous fistulas (ODAVFs). Methods Among the 238 GKS procedures performed for intracranial DAVFs in the authors' institute, 227 cases (146 CSDAVFs and 81 OIDAVFs) with clinical follow up formed the database from which the authors determined clinical outcome and the incidence of untoward events. One hundred ninety-five cases (118 CSDAVFs and 77 ODAVFs) with imaging follow up formed the database from which the authors determined the imaging results. Older age, female sex, higher incidence of diabetes, and shorter duration of symptoms were noted more in cases of CSDAVF than in ODAVFs. Most patients had symptomatic improvement after GKS. A symptomatic cure was observed in one patient with CSDAVFs as early as 6 weeks. The cumulative cure rate based on follow-up angiography of CSDAVFs approached 75% at 24 months, which was much better than that of ODAVFs (approximately 50% at 24 months). A neuroimaging-based cure lagged behind that of the clinical symptoms. Overall, there were only two nonfatal intracerebral hemorrhages during the follow-up period, both occurring less than 1 week after GKS and both being Cognard Type IIa+b with initial aggressive symptoms. Transient deterioration of neurological status without hemorrhage was noted in six patients with ODAVFs. Thrombosis of the superior ophthalmic vein occurred in 11 patients with CSDAVFs, in two of whom there were unilateral visual impairments. There were three cranial nerve neuropathies: transient in one CSDAVF and one ODAVF involving the jugular foramen, and another one was a CSDAVF previously treated by conventional radiotherapy. Conclusions Gamma Knife surgery provides a safe and effective option for treatment of intracranial DAVFs with a low risk of complications. In cases of DAVFs with benign clinical presentation, GKS can serve as a primary treatment. In some cases of aggressive DAVFs in which there is extensive retrograde cortical vein drainage, combined treatment with embolization or surgery is suggested.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2006
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2005
    In:  Journal of Neurosurgery Vol. 102 ( 2005-01), p. 87-97
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 102 ( 2005-01), p. 87-97
    Abstract: Object. The authors conducted a study to determine the optimal radiation dose for vestibular schwannoma (VS) and to examine the histopathology in cases of treatment failure for better understanding of the effects of irradiation. Methods. A retrospective study was performed of 195 patients with VS; there were 113 female and 82 male patients whose mean age was 51 years (range 11–82 years). Seventy-two patients (37%) had undergone partial or total excision of their tumor prior to gamma knife surgery (GKS). The mean tumor volume was 4.1 cm 3 (range 0.04–23.1 cm 3 ). Multiisocenter dose planning placed a prescription dose of 11 to 18.2 Gy on the 50 to 94% isodose located at the tumor margin. Clinical and magnetic resonance (MR) imaging follow-up evaluations were performed every 6 months. A loss of central enhancement was demonstrated on MR imaging in 69.5% of the patients. At the latest MR imaging assessment decreased or stable tumor volume was demonstrated in 93.6% of the patients. During a median follow-up period of 31 months resection was avoided in 96.8% of cases. Uncontrolled tumor swelling was noted in five patients at 3.5, 17, 24, 33, and 62 months after GKS, respectively. Twelve of 20 patients retained serviceable hearing. Two patients experienced a temporary facial palsy. Two patients developed a new trigeminal neuralgia. There was no treatment-related death. Histopathological examination of specimens in three cases (one at 62 months after GKS) revealed a long-lasting radiation effect on vessels inside the tumor. Conclusions. Radiosurgery had a long-term radiation effect on VSs for up to 5 years. A margin 12-Gy dose with homogeneous distribution is effective in preventing tumor progression, while posing no serious threat to normal cranial nerve function.
    Type of Medium: Online Resource
    ISSN: 0022-3085
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2005
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2005
    In:  Journal of Neurosurgery Vol. 102 ( 2005-01), p. 81-86
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 102 ( 2005-01), p. 81-86
    Abstract: Object. The authors sought to determine the value of gamma knife surgery (GKS) in the treatment of cavernous hemangiomas (CHs). Methods. Between 1993 and 2002, a total of 125 patients with symptomatic CHs were treated with GKS. Ninety-seven patients presented with bleeding and 45 of these had at least two bleeding episodes. Thirteen patients presented with seizures combined with hemorrhage, and 15 patients presented with seizures alone. The mean margin dose of radiation was 12.1 Gy and the mean follow-up time was 5.4 years. In the 112 patients who had bled the number of rebleeds after GKS was 32. These rebleeds were defined both clinically and based on magnetic resonance imaging for an annual rebleeding rate of 32 episodes/492 patient-years or 6.5%. Twenty-three of the 32 rebleeding episodes occurred within 2 years after GKS. Nine episodes occurred after 2 years; thus, the annual rebleeding rate after GKS was 10.3% for the first 2 years and 3.3% thereafter (p = 0.0038). In the 45 patients with at least two bleeding episodes before GKS, the rebleeding rate dropped from 29.2% (55 episodes/188 patient-years) before treatment to 5% (10 episodes/197 patient-years) after treatment (p 〈 0.0001). Among the 28 patients who presented with seizures, 15 (53%) had good outcomes (Engel Grades I and II). In this study of 125 patients, symptomatic radiation-induced complications developed in only three patients. Conclusions. Gamma knife surgery can effectively reduce the rebleeding rate after the first symptomatic hemorrhage in patients with CH. In addition, GKS may be useful in reducing the severity of seizures in patients with CH.
    Type of Medium: Online Resource
    ISSN: 0022-3085
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2005
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2006
    In:  Journal of Neurosurgery Vol. 105, No. Supplement ( 2006-12), p. 127-132
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 105, No. Supplement ( 2006-12), p. 127-132
    Abstract: The authors report the long-term treatment results of Gamma Knife surgery (GKS) for patients with low-grade astrocytomas who underwent surgery at a single institution. Methods A series of 21 patients (median age 20 years) with 25 intracranial low-grade astrocytomas (World Health Organization Grades I and II) were treated with GKS between 1993 and 2003. Among them, four underwent GKS as a primary treatment. Two underwent GKS as a treatment boost after radiotherapy. In the other 15 patients, GKS was performed as an adjuvant or salvage treatment for residual/recurrent tumors after the patients had undergone craniotomy. Tumor volumes ranged from 0.2 to 13.3 ml (median 2.4 ml). Prescription margin doses ranged from 8 to 18 Gy (median 14.5 Gy). Radiation volumes were 1.3 to 21.6 ml (median 3.6 ml). Patients underwent regular follow up, with neurological evaluation and magnetic resonance imaging studies obtained at 6-month intervals. One patient was lost to follow-up. The clinical follow-up time was 5 to 144 months (median 67 months). Complete tumor remission was seen in three patients. The 10-year progression-free patient survival rate after GKS was 65%. Tumor progression was found in six patients of whom five received further salvage treatment. All the tumor progression occurred within the GKS-treated volumes. Mild-to-moderate adverse radiation effects (AREs) were found in eight patients. Both of the patients who had undergone GKS as a treatment boost after radiotherapy developed AREs, but with good shrinkage of tumors. Conclusions Gamma Knife surgery provides durable long-term local tumor control with acceptable toxicity for some patients with highly selected low-grade astrocytomas.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2006
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...