GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (7)
  • Unknown  (7)
  • 2020-2024  (7)
  • Physics  (7)
  • 1
    In: The Astrophysical Journal, American Astronomical Society, Vol. 965, No. 2 ( 2024-04-01), p. 122-
    Abstract: The physics potential of detecting 8 B solar neutrinos will be exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model-independent manner by using three distinct channels of the charged current (CC), neutral current (NC), and elastic scattering (ES) interactions. Due to the largest-ever mass of 13 C nuclei in the liquid scintillator detectors and the expected low background level, 8 B solar neutrinos are observable in the CC and NC interactions on 13 C for the first time. By virtue of optimized event selections and muon veto strategies, backgrounds from the accidental coincidence, muon-induced isotopes, and external backgrounds can be greatly suppressed. Excellent signal-to-background ratios can be achieved in the CC, NC, and ES channels to guarantee the observation of the 8 B solar neutrinos. From the sensitivity studies performed in this work, we show that JUNO, with 10 yr of data, can reach the 1 σ precision levels of 5%, 8%, and 20% for the 8 B neutrino flux, sin 2 θ 12 , and Δ m 21 2 , respectively. Probing the details of both solar physics and neutrino physics would be unique and helpful. In addition, when combined with the Sudbury Neutrino Observatory measurement, the world's best precision of 3% is expected for the measurement of the 8 B neutrino flux.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2024
    detail.hit.zdb_id: 2960-9
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Climate Vol. 35, No. 10 ( 2022-05-15), p. 3161-3178
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 10 ( 2022-05-15), p. 3161-3178
    Abstract: Understanding variability of the Indonesian Throughflow (ITF) and its links to El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD), and how they are represented across climate models constitutes an important step toward improved future climate projections. These issues are examined using 20 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and the SODA-2.2.4 ocean reanalysis. It is found that the CMIP5 models overall simulate aspects of ITF variability, such as spectral and vertical structure, that are consistent with the reanalysis, although intermodel differences are substantial. The ITF variability is shown to exhibit two dominant principal vertical structures: a surface-intensified transport anomaly (ITF M1 ) and an anomalous transport characterized by opposing flows in the surface and subsurface (ITF M2 ). In the CMIP5 models and reanalysis, ITF M2 is linked to both ENSO and the IOD via anomalous Indo-Pacific Walker circulation. The driver of ITF M1 however differs between the reanalysis and the CMIP5 models. In the reanalysis ITF M1 is a delayed response to ENSO, whereas in the CMIP5 models it is linked to the IOD associated with the overly strong IOD amplitude bias. Further, the CMIP5 ITF variability tends to be weaker than in the reanalysis, due to a tendency for the CMIP5 models to simulate a delayed IOD in response to ENSO. The importance in considering the vertical structure of ITF variability in understanding ENSO and IOD impact is further underscored by the close link between greenhouse-forced changes in ENSO variability and projected changes in subsurface ITF variability.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2024
    In:  Journal of Climate Vol. 37, No. 16 ( 2024-08-15), p. 4133-4151
    In: Journal of Climate, American Meteorological Society, Vol. 37, No. 16 ( 2024-08-15), p. 4133-4151
    Abstract: Recent research has shown that there is a projected increase in the frequency of strong positive Indian Ocean dipole (spIOD) events in terms of both sea surface temperature (SST) and precipitation. However, it is not clear whether the spIOD events defined by SST and precipitation, hereafter referred to as SST-spIOD and Pr-spIOD events, respectively, will increase at the same pace under greenhouse warming. Using climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and CMIP6 that can reasonably simulate the spIOD events, here we find that the occurrence of Pr-spIOD events increases much more than that of SST-spIOD events (+217% vs +77%) under the future high-emission scenario. The diverse response stems from a notably large increase in the spIOD events with strong rainfall but moderate SST anomalies (Pr-only spIOD), which is facilitated by a change in the local meridional Hadley circulation induced by land–sea thermal contrast in addition to the background mean-state SST warming. For the spIOD events with prominent anomalies in both rainfall and SST (concurrent spIOD), their occurrences are projected to increase, but their average SST amplitude is projected to weaken. The increased occurrence is associated with a westward-extended structural change induced by mean linear zonal advection feedbacks, while the weakened event-average SST amplitude results from a more stabilized atmosphere and coincides with the projected reduction in IOD SST skewness. Our results suggest that IOD-related mitigation strategies should consider the diverse responses of different kinds of spIOD events to greenhouse warming.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2024
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Climate Vol. 36, No. 13 ( 2023-07-01), p. 4393-4411
    In: Journal of Climate, American Meteorological Society, Vol. 36, No. 13 ( 2023-07-01), p. 4393-4411
    Abstract: The western-central equatorial Pacific (WCEP) zonal wind affects El Niño–Southern Oscillation (ENSO) by involving a series of multiscale air–sea interactions. Its interannual variation contributes the most to ENSO amplitude. Thus, understanding the predictability of the WCEP interannual wind is of great importance for better predictions of ENSO. Here, we show that the North Pacific Oscillation (NPO) and the South Pacific Oscillation (SPO) alternate in fueling this interannual wind from late boreal winter to austral winter in the presence of background trade winds in different hemispheres. During the boreal winter–spring, the NPO registers footprints in the tropics by benefiting from the Pacific meridional mode and modulating the northwestern Pacific intertropical convergence zone (NITCZ). However, as austral winter approaches, the SPO takes over the role of the NPO in maintaining the anomalous NITCZ. Moreover, the interannual wind is further driven to the east in the positive phase of the SPO, by intensified central-eastern equatorial Pacific convection resulting from tropical–extratropical heat flux adjustments. A reconstructed WCEP interannual wind index involving only the NPO and the SPO possesses a long lead time for ENSO prediction of nearly one year. These two extratropical boosters enhance the viability of equatorial Pacific zonal wind anomalies associated with the large growth rate of ENSO, and the one in the winter hemisphere seems to be more efficient in forcing the tropics. Our result further indicates that the NPO benefits a long-lead prediction of the WCEP interannual wind and ENSO, while the SPO is the dominant extratropical predictor of ENSO amplitude. Significance Statement ENSO is closely linked to the interannual variability of equatorial Pacific zonal wind, and ENSO prediction is impeded by the weak predictability of the wind. We have found that the North Pacific Oscillation and the South Pacific Oscillation take turns in affecting the interannual variability of the zonal wind from the late boreal winter to austral winter, and the winter hemisphere extratropical booster is more efficient in modulating tropical convection and the associated surface winds. An estimated zonal wind index constructed by the two extratropical precursors possesses a long lead time for ENSO prediction. Our result provides useful information for better predicting ENSO by further considering winter hemisphere extratropical climate variability.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 6 ( 2021-03), p. 2205-2218
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 6 ( 2021-03), p. 2205-2218
    Abstract: El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate fluctuations with wide-ranging socioeconomic and environmental impacts. Understanding the eastern Pacific (EP) and central Pacific (CP) El Niño response to a warmer climate is paramount, yet the role of internal climate variability in modulating their response is not clear. Using large ensembles, we find that internal variability generates a spread in the standard deviation and skewness of these two El Niño types that is similar to the spread of 17 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that realistically simulate ENSO diversity. Based on 40 Community Earth System Model Large Ensemble (CESM-LE) and 99 Max Planck Institute for Meteorology Grand Ensemble (MPI-GE) members, unforced variability can explain more than 90% of the historical EP and CP El Niño standard deviation and all of the ENSO skewness spread in the 17 CMIP5 models. Both CESM-LE and the selected CMIP5 models show increased EP and CP El Niño variability in a warmer climate, driven by a stronger mean vertical temperature gradient in the upper ocean and faster surface warming of the eastern equatorial Pacific. However, MPI-GE shows no agreement in EP or CP standard deviation change. This is due to weaker sensitivity to the warming signal, such that when the eastern equatorial Pacific surface warming is faster, the change in upper ocean vertical temperature gradient tends to be weaker. This highlights that individual models produce a different ENSO response in a warmer climate, and that considerable uncertainty within the CMIP5 ensemble may be caused by internal climate variability.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 2 ( 2020-01-15), p. 675-690
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 2 ( 2020-01-15), p. 675-690
    Abstract: Since 1979, three extreme El Niño events occurred, in 1982/83, 1997/98, and 2015/16, with pronounced impacts that disrupted global weather patterns, agriculture, fisheries, and ecosystems. Although all three episodes are referred to as strong equatorial eastern Pacific (EP) El Niño events, the 2015/16 event is considered a mixed regime of both EP and central Pacific (CP) El Niño. During such extreme events, sea surface temperature (SST) anomalies peak over the EP region, hereafter referred to as an extreme warm El Niño (ExtWarmEN) event. Simultaneously, the intertropical convergence zone (ITCZ) moves southward to the usually dry and cold Niño-3 region, resulting in dramatic rainfall increases to more than 5 mm day −1 averaged over boreal winter, referred to as an extreme convective El Niño (ExtConEN) event. However, in climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that are able to simulate both types of events, ExtConEN events are found not to always coincide with ExtWarmEN events and the disassociation becomes more distinct under greenhouse warming when the increased frequency of ExtConEN events is notably larger than that of ExtWarmEN events. The disassociation highlights the role of eastward migration of western Pacific convection and equatorward shift of the South Pacific convergence zone associated with the faster warming over the EP region as a result of greenhouse warming.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Climate Vol. 36, No. 24 ( 2023-12-15), p. 8331-8345
    In: Journal of Climate, American Meteorological Society, Vol. 36, No. 24 ( 2023-12-15), p. 8331-8345
    Abstract: Prediction of El Niño–Southern Oscillation (ENSO) is hindered by a spring predictability barrier (SPB). In this paper, we investigate the effects of the Indian Ocean (IO) on the SPB. Using a seasonally varying extended IO–ENSO recharge oscillator model, we find that the SPB is much weakened when IO is coupled with ENSO. To gauge the relative role of the Indian Ocean dipole (IOD) and the Indian Ocean Basin (IOB) modes in weakening ENSO SPB, we develop an empirical dynamical model, the linear inverse model (LIM). By coupling/decoupling the IOB or IOD mode with ENSO, we show that the IOB significantly weakens eastern Pacific and central Pacific ENSO SPBs, while the IOD plays a weaker role. The evolution of the optimum initial structures also illustrates the importance of the IOB in ENSO SPB. Moreover, the IOB strongly influences the forecast skill of La Niña SPB rather than El Niño SPB. This point is also identified through six coupled models from the North American multimodel ensemble. It may be related to the role of the IO in the asymmetry in the duration of El Niño and La Niña. The IOB-induced easterly wind anomalies are conducive to the development of La Niña and thus the prediction of La Niña events, whereas these anomalous easterlies are less important during the development of El Niño and the related forecast of El Niño events.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...