GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 42, No. 10 ( 2004-01-1)
    Abstract: The E170 module was evaluated at 13 sites in an international multicentre study. The objective of the study was to assess the analytical performance of 49 analytes, and to collect feedback on the system’s reliability and practicability. The typical, within-run coefficients of variation (CVs) for most of the quantitative assays ranged between 1 and 2% while a range of 2–4% was achieved with the infectious disease methods. Total precision CVs were found to be within the manufacturer’s expected performance ranges, demonstrating good concordance of the system’s measuring channels and a high reproducibility during the 2–4-week trial period. The functional sensitivity of 11 selected assays met the clinical requirements (e.g., thyreotroponin (TSH) 0.008 mU/l, troponin T 0.02 µg/l, total prostate-specific antigen (PSA) 0.03 µg/l). The E170 showed no drift during an 8-hour period and no relevant reagent carryover. Accuracy was confirmed by ring trial experiments and method comparisons vs. Elecsys
    Type of Medium: Online Resource
    ISSN: 1437-4331 , 1434-6621
    Language: Unknown
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2004
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2004
    In:  Clinical Chemistry and Laboratory Medicine (CCLM) Vol. 42, No. 8 ( 2004-01-1)
    In: Clinical Chemistry and Laboratory Medicine (CCLM), Walter de Gruyter GmbH, Vol. 42, No. 8 ( 2004-01-1)
    Abstract: The purpose of this multicenter study was to evaluate the technical performance of the automated Elecsys proBNP (brain natriuretic peptide) assay, which is indicated as an aid in the diagnosis of individuals suspected of having congestive heart failure. The Elecsys proBNP assay is an electrochemiluminescent immunoassay employing two polyclonal NT-proBNP-specific antibodies in a sandwich test format. The study was performed on the three Elecsys analyzers (E 1010, E 2010, and E 170) at eight different sites world-wide. Within- and total precision were ≤3%, with total precision slightly higher on the Elecsys E 170 instrument with multiple modules. Reproducibility among sites and platforms was 〈 5%. Precision at particularly low NT-proBNP concentrations was assessed down to approximately 25 pg/ml with CVs of 12.6% at 29.2 pg/ml and 9.6% at 38.5 pg/ml for the Elecsys 1010/2010 and E 170, respectively. Linearity was evaluated up to 25,000 pg/ml with a sample-based non-linear response observed with recoveries of 〈 90% for proBNP concentrations 〈 10 000 pg/ml. Slopes ranged between 0.92 and 1.02 and intercepts from –5.3 to 10.4 pg/ml (r≥0.998) among the three types of analyzers. Slopes were 4.95 and 4.53 in comparison to the Biosite Triage and Shionogi BNP assays. There was no assay interference, and no effect of barrier gels, tube composition, or freeze-thaw. NT-proBNP concentrations in EDTA plasma were up to 10% lower than in serum or heparinized plasma and the analyte was stable at 4°C for up to 72 hours (the maximum time tested). There was no circadian rhythm in normal subjects or congestive heart failure patients and there was no effect of drawing position. In summary, the Elecsys proBNP assay exhibits good technical performance and is suitable for use in routine clinical laboratories to aid in the diagnosis of congestive heart failure.
    Type of Medium: Online Resource
    ISSN: 1437-4331 , 1434-6621
    Language: Unknown
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2004
    detail.hit.zdb_id: 1492732-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...