GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 46, No. 3 ( 2018), p. 1027-1041
    Abstract: Background/Aims: In this study, the long non-coding RNA (lncRNA) expression profile in human thoracic aortic dissection (TAD), a highly lethal cardiovascular disease, was investigated. Methods: Human TAD (n=3) and normal aortic tissues (NA) (n=3) were examined by high-throughput sequencing. Bioinformatics analyses were performed to predict the roles of aberrantly expressed lncRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the results. Results: A total of 269 lncRNAs (159 up-regulated and 110 down-regulated) and 2, 255 mRNAs (1 294 up-regulated and 961 down-regulated) were aberrantly expressed in human TAD (fold-change 〉 1.5, P 〈 0.05). QRT-PCR results of five dysregulated genes were consistent with HTS data. A lncRNA-mRNA coexpression analysis showed positive correlations between the up-regulated lncRNA (ENSG00000269936) and its adjacent up-regulated mRNA (MAP2K6, R=0.940, P 〈 0.01), and between the down-regulated lncRNA_1421 and its down-regulated mRNAs (FBLN5, R=0.950, P 〈 0.01; ACTA2, R=0.96, P 〈 0.01; TIMP3, R=0.96, P 〈 0.05). The lncRNA-miRNA-mRNA network indicated that the up-regulated lncRNA XIST and p21 had similar sequences targeted by has-miR-17-5p. The results of luciferase assay and fluorescence immuno-cytochemistry were consistent with that. And qRT-PCR results showed that lncRNA XIST and p21 were expressed at a higher level and has-miR-17-5p was expressed at a lower level in TAD than in NA. The predicted binding motifs of three up-regulated lncRNAs (ENSG00000248508, ENSG00000226530, and EG00000259719) were correlated with up-regulated RUNX1 (R=0.982, P 〈 0.001; R=0.967, P 〈 0.01; R=0.960, P 〈 0.01, respectively). Conclusions: Our study revealed a set of dysregulated lncRNAs and predicted their multiple potential functions in human TAD. These findings suggest that lncRNAs are novel potential therapeutic targets for human TAD.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    detail.hit.zdb_id: 1067572-3
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Pharmacology Vol. 13 ( 2022-4-1)
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 13 ( 2022-4-1)
    Abstract: Backgrounds: Immune checkpoint inhibitors (ICIs) are considered cornerstones of oncology treatment with durable anti-tumor efficacy, but the increasing use of ICIs is associated with the risk of developing immune-related adverse events (irAEs). Although ICI-associated pancreatic adverse events (AEs) have been reported in patients treated with ICIs, the clinical features and spectrum of pancreatic AEs are still not well-defined. Therefore, this study aimed to identify the association between pancreatic AEs and ICIs treatments and to characterize the main features of ICI-related pancreatic injury (ICIPI) based on the Food and Drug Administration Adverse Event Reporting System (FAERS) database. Methods: Data from the first quarter of 2015 to the first quarter of 2021 in the database were extracted to conduct a disproportionality analysis. The selection of AEs related to the pancreas relied on previous studies and preferred terms from the Medical Dictionary for Regulatory Activities. Two main disproportionality analyses—the reporting odds ratio (ROR) and information component (IC)—were used to evaluate potential associations between ICIs and pancreatic AEs. Results: In total, 2,364 cases of pancreatic AEs in response to ICIs were extracted from the FAERS database, of which, 647 were identified as ICI-associated pancreatitis and 1,293 were identified as ICI-associated diabetes mellitus. Generally, significant signals can be detected between pancreatic AEs and all ICIs treatments (ROR 025 = 3.30, IC 025 = 1.71). For monotherapy, the strongest signal associated with pancreatitis was reported for anti-PD-L1 (ROR 025 = 1.75, IC 025 = 0.76), whereas that with diabetes mellitus was reported for anti-PD-1 (ROR 025 = 6.39, IC 025 = 2.66). Compared with monotherapy, combination therapy showed stronger associations with both ICI-associated pancreatitis (ROR 025 = 2.35, IC 025 = 1.20 vs . ROR 025 = 1.52, IC 025 = 0.59) and ICI-associated diabetes mellitus (ROR 025 = 9.53, IC 025 = 3.23 vs . ROR 025 = 5.63, IC 025 = 2.48), but lower fatality proportion. Conclusions: ICIs were significantly associated with the over-reporting frequency of pancreatic AEs, in which combination therapy posed a higher reporting frequency. Therefore, patients should be informed of these potential toxicities before ICIs medications are administered.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 13 ( 2022-3-18)
    Abstract: The prognosis of cardiorenal dysfunction induced by diabetes mellitus (DM), which belongs to cardiorenal syndrome type 5, is poor and its pathogenesis remains elusive. We have reported that CX3CL1 exacerbated heart failure and direct inhibition of CX3CL1 improved cardiac function. Emerging evidence supports that CX3CL1 is involved in renal impairment. Here we attempt to clarify whether CX3CL1 might be a therapeutic target for cardiorenal dysfunction in diabetes. We found that cardiac and renal CX3CL1 protein levels were significantly increased in both streptozotocin-induced diabetic mice and in non-obese diabetic mice, and that hyperglycemia led to persistent CX3CL1 expression in the heart and kidneys even after it was controlled by insulin. In cultured cardiac and renal cells, soluble CX3CL1 accelerated mitochondrial-dependent apoptosis via activation of the RhoA/ROCK1-Bax signaling pathway and promoted fibrosis through cellular phenotypic trans-differentiation mediated by the TGF-β/Smad pathway. In the two diabetic mouse models, knockout of CX3CL1 receptor CX3CR1 or treatment with an CX3CL1 neutralizing antibody significantly improved cardiorenal dysfunction by inhibiting apoptosis, mitochondrial dysfunction, and fibrosis. Moreover, sodium glucose cotransporter 2 inhibitor canagliflozin significantly downregulated cardiac and renal CX3CL1 expression and improved cardiorenal dysfunction. These findings indicate that CX3CL1 could be a new therapeutic target for diabetes-induced cardiorenal dysfunction.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: BioDrugs, Springer Science and Business Media LLC, Vol. 35, No. 4 ( 2021-07), p. 445-458
    Type of Medium: Online Resource
    ISSN: 1173-8804 , 1179-190X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1364202-9
    detail.hit.zdb_id: 2043743-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...