GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Current Pharmaceutical Design, Bentham Science Publishers Ltd., Vol. 28, No. 41 ( 2022-11), p. 3363-3373
    Abstract: Plants are a source of diverse classes of secondary metabolites with anticancer properties. Paclitaxel (Taxol) is an anticancer drug isolated from various Taxus species and is used as a chemotherapeutic agent against various cancers. The biosynthesis of paclitaxel is a complex pathway, making its total chemical synthesis commercially non-viable; hence, alternative novel sources - like plant cell culture and heterologous expression systems, are being investigated to overcome this issue. Advancements in the field of genetic engineering, microbial fermentation engineering, and recombinant techniques have significantly increased the achievable yields of paclitaxel. Indeed, paclitaxel selectively targets microtubules and causes cell cycle arrest in the G2/M phase, inducing a cytotoxic effect in a concentration and time-dependent manner. Innovative drug delivery formulations, like the development of albumin-bound nanoparticles, nano-emulsions, nano-suspensions, liposomes, and polymeric micelles, have been applied to enhance the delivery of paclitaxel to tumor cells. This review focuses on the production, biosynthesis, mechanism of action, and anticancer effects of paclitaxel.
    Type of Medium: Online Resource
    ISSN: 1381-6128
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2022
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antioxidants, MDPI AG, Vol. 9, No. 1 ( 2020-01-04), p. 43-
    Abstract: The heavy metal contamination in plant-soil environment has increased manifold recently. In order to reduce the harmful effects of metal stress in plants, the application of beneficial soil microbes is gaining much attention. In the present research, the role of Serratia marcescens BM1 in enhancing cadmium (Cd) stress tolerance and phytoremediation potential of soybean plants, was investigated. Exposure of soybean plants to two Cd doses (150 and 300 µM) significantly reduced plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Additionally, Cd induced the stress levels of Cd, proline, glycine betaine, hydrogen peroxide, malondialdehyde, antioxidant enzymes (i.e., catalase, CAT; ascorbate peroxidase, APX; superoxide dismutase, SOD; peroxidise, POD), and the expression of stress-related genes (i.e., APX, CAT, Fe-SOD, POD, CHI, CHS, PHD2, VSO, NR, and P5CS) in soybean leaves. On the other hand, inoculation of Cd-stressed soybean plants with Serratia marcescens BM1 significantly enhanced the plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Moreover, Serratia marcescens BM1 inoculation reduced the levels of cadmium and oxidative stress markers, but significantly induced the activities of antioxidant enzymes and the levels of osmolytes and stress-related genes expression in Cd-stressed plants. The application of 300 µM CdCl2 and Serratia marcescens triggered the highest expression levels of stress-related genes. Overall, this study suggests that inoculation of soybean plants with Serratia marcescens BM1 promotes phytoremediation potential and Cd stress tolerance by modulating the photosynthetic attributes, osmolytes biosynthesis, antioxidants machinery, and the expression of stress-related genes.
    Type of Medium: Online Resource
    ISSN: 2076-3921
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704216-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...