GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 64, No. 10 ( 2020-09-21)
    Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is already responsible for far more deaths than previous pathogenic coronaviruses (CoVs) from 2002 and 2012. The identification of clinically approved drugs to be repurposed to combat 2019 CoV disease (COVID-19) would allow the rapid implementation of potentially life-saving procedures. The major protease (Mpro) of SARS-CoV-2 is considered a promising target, based on previous results from related CoVs with lopinavir (LPV), an HIV protease inhibitor. However, limited evidence exists for other clinically approved antiretroviral protease inhibitors. Extensive use of atazanavir (ATV) as antiretroviral and previous evidence suggesting its bioavailability within the respiratory tract prompted us to study this molecule against SARS-CoV-2. Our results show that ATV docks in the active site of SARS-CoV-2 Mpro with greater strength than LPV, blocking Mpro activity. We confirmed that ATV inhibits SARS-CoV-2 replication, alone or in combination with ritonavir (RTV) in Vero cells and a human pulmonary epithelial cell line. ATV/RTV also impaired virus-induced enhancement of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels. Together, our data strongly suggest that ATV and ATV/RTV should be considered among the candidate repurposed drugs undergoing clinical trials in the fight against COVID-19.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 63, No. 2 ( 2019-02)
    Abstract: Chikungunya virus (CHIKV) causes a febrile disease associated with chronic arthralgia, which may progress to neurological impairment. Chikungunya fever (CF) is an ongoing public health problem in tropical and subtropical regions of the world, where control of the CHIKV vector, Aedes mosquitos, has failed. As there is no vaccine or specific treatment for CHIKV, patients receive only palliative care to alleviate pain and arthralgia. Thus, drug repurposing is necessary to identify antivirals against CHIKV. CHIKV RNA polymerase is similar to the orthologue enzyme of other positive-sense RNA viruses, such as members of the Flaviviridae family. Among the Flaviviridae , not only is hepatitis C virus RNA polymerase susceptible to sofosbuvir, a clinically approved nucleotide analogue, but so is dengue, Zika, and yellow fever virus replication. Here, we found that sofosbuvir was three times more selective in inhibiting CHIKV production in human hepatoma cells than ribavirin, a pan-antiviral drug. Although CHIKV replication in human induced pluripotent stem cell-derived astrocytes was less susceptible to sofosbuvir than were hepatoma cells, sofosbuvir nevertheless impaired virus production and cell death in a multiplicity of infection-dependent manner. Sofosbuvir also exhibited antiviral activity in vivo by preventing CHIKV-induced paw edema in adult mice at a dose of 20 mg/kg of body weight/day and prevented mortality in a neonate mouse model at 40- and 80-mg/kg/day doses. Our data demonstrate that a prototypic alphavirus, CHIKV, is also susceptible to sofosbuvir. As sofosbuvir is a clinically approved drug, our findings could pave the way to it becoming a therapeutic option against CF.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 1999
    In:  Antimicrobial Agents and Chemotherapy Vol. 43, No. 1 ( 1999-01), p. 134-140
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 43, No. 1 ( 1999-01), p. 134-140
    Abstract: The extensive interindividual variability in oral bioavailability of itraconazole prompted an assessment of the bioequivalence of two formulations marketed in Brazil, namely, Sporanox (reference) and Traconal (test). Eighteen healthy volunteers received single 200-mg oral doses of each formulation at 2-week intervals in a randomized, crossover protocol. The concentrations of itraconazole and hydroxy-itraconazole in plasma were measured by high-performance liquid chromatography, and the datum points ( n = 396) were subsequently used to develop limited-sampling strategy models for estimation of the areas under the curve (AUCs) for both compounds. The 90% confidence intervals for individual percent ratios (test/reference formulations) of the maximum concentration of drug in serum, the AUC from 0 to 48 h and the AUC from time zero to infinity (AUC 0–∞ ) for itraconazole and hydoxy-itraconazole were below the range of 80 to 125%, suggesting that these formulations are not bioequivalent. Linear regression analysis of the AUC 0–∞ against time and a “jackknife” validation procedure revealed that models based on three sampling times accurately predict ( R 2 , 〉 0.98; bias, 〈 3%; precision, 3 to 7%) the AUC 0–∞ for each of the four formulation-compound pairs tested. Increasing the number of sampling points to more than three adds little to the accuracy of the estimates of AUC 0–∞ . The three-point models developed for the reference formulation were validated retrospectively and were found to predict within 2% the AUC 0–∞ reported in previous studies performed under similar protocols. In conclusion, the data in this study indicate (i) that the tested formulations are not bioequivalent when single doses are compared and (ii) that limited-sampling strategy models based on three points predict accurately the AUC 0–∞ s for itraconazole and hydroxy-itraconazole and could be a valuable tool in pharmacokinetic and bioequivalence studies of single oral doses of itraconazole.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...