GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (52)
  • Pharmacy  (52)
  • 1
    In: Marine Drugs, MDPI AG, Vol. 13, No. 4 ( 2015-04-14), p. 2306-2326
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2015
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pharmaceutics, MDPI AG, Vol. 14, No. 2 ( 2022-01-21), p. 249-
    Abstract: Enrofloxacin (EFX) reacting with Ca(II) afforded a new complex, [Ca(EFX)2(H2O)4] (EFX-Ca), which was structurally characterized both in solid and solution chemistry. E. coli and S. typhi were tested to be the most sensitive strains for EFX-Ca. The LD50 value of EFX-Ca in mice was 7736 mg/kg, implying the coordination of EFX to Ca(II) effectively reduced its acute toxicity. EFX-Ca also decreased the plasma-binding rate and enhanced the drug distribution in rats along with longer elimination half-life. EFX-Ca also showed similar low in vivo acute toxicity and higher anti-inflammation induced by H2O2 or CuSO4 in zebrafish, with reactive oxygen species (ROS)-related elimination. The therapeutic effects of EFX-Ca on two types (AA and 817) of E. coli-infected broilers were also better than those of EFX, with cure rates of 78% and 88%, respectively. EFX-Ca showed promise as a bio-safe metal-based veterinary drug with good efficacy and lower toxicity.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pharmaceutics, MDPI AG, Vol. 14, No. 8 ( 2022-08-17), p. 1718-
    Abstract: Injury to lower genitourinary (GU) tissues, which may result in either infertility and/or organ dysfunctions, threatens the overall health of humans. Bioactive agent-based regenerative therapy is a promising therapeutic method. However, strategies for spatiotemporal delivery of bioactive agents with optimal stability, activity, and tunable delivery for effective sustained disease management are still in need and present challenges. In this review, we present the advancements of the pivotal components in delivery systems, including biomedical innovations, system fabrication methods, and loading strategies, which may improve the performance of delivery systems for better regenerative effects. We also review the most recent developments in the application of these technologies, and the potential for delivery-based regenerative therapies to treat lower GU injuries. Recent progress suggests that the use of advanced strategies have not only made it possible to develop better and more diverse functionalities, but also more precise, and smarter bioactive agent delivery systems for regenerative therapy. Their application in lower GU injury treatment has achieved certain effects in both patients with lower genitourinary injuries and/or in model animals. The continuous evolution of biomaterials and therapeutic agents, advances in three-dimensional printing, as well as emerging techniques all show a promising future for the treatment of lower GU-related disorders and dysfunctions.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Pharmaceutics, MDPI AG, Vol. 15, No. 4 ( 2023-04-13), p. 1235-
    Abstract: Posterior capsule opacification (PCO) remains the most common cause of vision loss post cataract surgery. The clinical management of PCO formation is limited to either physical impedance of residual lens epithelial cells (LECs) by implantation of specially designed intraocular lenses (IOL) or laser ablation of the opaque posterior capsular tissues; however, these strategies cannot fully eradicate PCO and are associated with other ocular complications. In this review, we critically appraise recent advances in conventional and nanotechnology-based drug delivery approaches to PCO prophylaxis. We focus on long-acting dosage forms, including drug-eluting IOL, injectable hydrogels, nanoparticles and implants, highlighting analysis of their controlled drug-release properties (e.g., release duration, maximum drug release, drug-release half-life). The rational design of drug delivery systems by considering the intraocular environment, issues of initial burst release, drug loading content, delivery of drug combination and long-term ocular safety holds promise for the development of safe and effective pharmacological applications in anti-PCO therapies.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Pharmaceutics Vol. 13, No. 4 ( 2021-04-13), p. 537-
    In: Pharmaceutics, MDPI AG, Vol. 13, No. 4 ( 2021-04-13), p. 537-
    Abstract: Coordinated transcellular transport by the uptake via organic cation transporters (OCTs) in concert with the efflux via multidrug and toxin extrusion proteins (MATEs) is an essential system for hepatic and renal drug disposition. Despite their clinical importance, the regulation of OCTs and MATEs remains poorly characterized. It has been reported that cadmium (Cd2+) increase the activities of OCTs while being a substrate of MATEs. Here, we found that human (h) OCT2 protein, as compared with hMATE1, was more active in trafficking between the plasma membrane and cytoplasmic storage pool. Cd2+ exposure could significantly enhance the translocation of hOCT2 and hOCT1, but not hMATE1, to the plasma membrane. We further identified that candesartan, a widely prescribed angiotensin II receptor blocker, behaved similarly toward OCT2 and MATE1 as Cd2+ did. Importantly, Cd2+ and candesartan treatments could lead to an enhanced accumulation of metformin, which is a well-characterized substrate of OCTs/MATEs, in mouse kidney and liver, respectively. Altogether, our studies have uncovered possible divergent regulation of OCTs and MATEs by certain xenobiotics, such as Cd2+ and candesartan due to the different cellular trafficking of these two families of transporter proteins, which might significantly affect drug disposition in the liver and kidney.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Pharmaceutics, MDPI AG, Vol. 15, No. 6 ( 2023-05-30), p. 1623-
    Abstract: The authors and the journal retract the article, ‘Pyrvinium Treatment Confers Hepatic Metabolic Benefits via β-Catenin Downregulation and AMPK Activation’ [...]
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Pharmaceuticals, MDPI AG, Vol. 16, No. 3 ( 2023-03-20), p. 462-
    Abstract: Fucoidan and deep-sea water (DSW) are attractive marine resources for treating type 2 diabetes (T2DM). In this study, the regulation and mechanism associated with the co-administration of the two were first studied using T2DM rats, induced by a high fat diet (HFD) and streptozocin (STZ) injection. Results demonstrate that, compared to those with DSW or FPS alone, the orally administered combination of DSW and FPS (CDF), especially the high dose (H-CDF), could preferably inhibit weight loss, decrease levels of fasting blood glucose (FBG) and lipids, and improve hepatopancreatic pathology and the abnormal Akt/GSK-3β signaling pathway. The fecal metabolomics data show that H-CDF could regulate the abnormal levels of metabolites mainly through the regulation of linoleic acid (LA) metabolism, bile acid (BA) metabolism, and other related pathways. Moreover, H-CDF could adjust the diversity and richness of bacterial flora and enrich bacterial groups, such as Lactobacillaceae and Ruminococcaceae UCG-014. In addition, Spearman correlation analysis illustrated that the interaction between the gut microbiota and BAs plays an essential role in the action of H-CDF. In the ileum, H-CDF was verified to inhibit activation of the farnesoid X receptor (FXR)–fibroblast growth factor 15 (FGF15) pathway, which is regulated by the microbiota–BA–axis. In conclusion, H-CDF enriched Lactobacillaceae and Ruminococcaceae UCG-014, thereby changing BA metabolism, linoleic acid metabolism, and other related pathways, as well as enhancing insulin sensitivity and improving glucose and lipid metabolism.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Pharmaceuticals, MDPI AG, Vol. 16, No. 5 ( 2023-04-28), p. 664-
    Abstract: G protein-coupled receptor kinase 2 (GRK2) is one of the cytosolic enzymes, and GRK2 translocation induces prostaglandin E2 receptor 4 (EP4) over-desensitization and reduces the level of cyclic adenosine monophosphate (cAMP) to regulate macrophage polarization. However, the role of GRK2 in the pathophysiology of ulcerative colitis (UC) remains unclear. In this study, we investigated the role of GRK2 in macrophage polarization in UC, using biopsies from patients, a GRK2 heterozygous mouse model with dextran sulfate sodium (DSS)-induced colitis, and THP-1 cells. The results showed that a high level of prostaglandin E2 (PGE2) stimulated the receptor EP4 and enhanced the transmembrane activity of GRK2 in colonic lamina propria mononuclear cells (LPMCs), resulting in a down-regulation of membrane EP4 expression. Then, the suppression of cAMP–cyclic AMP responsive element-binding (CREB) signal inhibited M2 polarization in UC. Paroxetine is acknowledged as one of the selective serotonin reuptake inhibitors (SSRI), which is also considered as a potent GRK2 inhibitor with a high selectivity for GRK2. We found that paroxetine could alleviate symptoms of DSS-induced colitis in mice by regulating GPCR signaling to affect macrophage polarization. Taken together, the current results show that GRK2 may act as a novel therapeutic target in UC by regulating macrophage polarization, and paroxetine as a GRK2 inhibitor may have therapeutic effect on mice with DSS-induced colitis.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Pharmaceuticals, MDPI AG, Vol. 15, No. 12 ( 2022-12-14), p. 1556-
    Abstract: Due to their strong bacterial binding and bacterial toxicity, cationic liposomes have been utilized as effective antibacterial materials in many studies. However, few researchers have systematically compared their antibacterial activity with their mammalian cell cytotoxicity or have deeply explored their antibacterial and cytotoxicity mechanisms. Here, we prepared a series of cationic liposomes (termed CLs) using dimethyldioctadecylammonium chloride (DODAC) and lecithin at different molar ratios. CLs have the ability to effectively bind with Gram-positive and Gram-negative bacteria through electrostatic and hydrophobic interactions. Further, the CLs with high molar ratios of DODAC (30 and 40 mol%) can disrupt the bacterial wall/membrane, efficiently inducing the production of reactive oxygen species (ROS). More importantly, we carefully compared the antibacterial activity and the mammalian cell cytotoxicity of various CLs differing in DODAC contents and liposomal concentrations and revealed that, whether they are bacterial or mammalian cells, an increasing DODAC content in CLs can lead to an elevated cytotoxicity level. Further, there exists a critical DODAC contents ( 〉 20 mol%) in CLs to endow them with effective antibacterial ability. However, the variation in the DODAC content and liposomal concentration of CLs has different degrees of influence on the antibacterial activity or cytotoxicity. For example, CLs at high DODAC content (i.e., CL0.3 and CL0.4) could effectively kill both types of bacterial cells but only cause negligible toxicity to mammalian cells. We believe that a systematic comparison between the antibacterial activity and the cytotoxicity of CLs with different DODAC contents will provide an important reference for the potential clinical applications of cationic liposomes.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Pharmaceuticals, MDPI AG, Vol. 16, No. 4 ( 2023-03-30), p. 510-
    Abstract: Aim: The cardiac toxicity that occurs during administration of anti-tumor agents has attracted increasing concern. Fluoropyrimidines have been used for more than half a century, but their cardiotoxicity has not been well clarified. In this study, we aimed to assess the incidence and profile of fluoropyrimidine-associated cardiotoxicity (FAC) comprehensively based on literature data. Methods: A systematic literature search was performed using PubMed, Embase, Medline, Web of Science, and Cochrane library databases and clinical trials on studies investigating FAC. The main outcome was a pooled incidence of FAC, and the secondary outcome was specific treatment-related cardiac AEs. Random or fixed effects modeling was used for pooled meta-analyses according to the heterogeneity assessment. PROSPERO registration number: (CRD42021282155). Results: A total of 211 studies involving 63,186 patients were included, covering 31 countries or regions in the world. The pooled incidence of FAC, by meta-analytic, was 5.04% for all grades and 1.5% for grade 3 or higher. A total of 0.29% of patients died due to severe cardiotoxicities. More than 38 cardiac AEs were identified, with cardiac ischemia (2.24%) and arrhythmia (1.85%) being the most frequent. We further performed the subgroup analyses and meta-regression to explore the source of heterogeneity, and compare the cardiotoxicity among different study-level characteristics, finding that the incidence of FAC varied significantly among different publication decades, country/regions, and genders. Patients with esophagus cancer had the highest risk of FAC (10.53%), while breast cancer patients had the lowest (3.66%). The treatment attribute, regimen, and dosage were significantly related to FAC. When compared with chemotherapeutic drugs or targeted agents, such a risk was remarkably increased (χ2 = 10.15, p 〈 0.01; χ2 = 10.77, p 〈 0.01). The continuous 5-FU infusion for 3–5 consecutive days with a high dosage produced the highest FAC incidence (7.3%) compared with other low-dose administration patterns. Conclusions: Our study provides comprehensive global data on the incidence and profile of FAC. Different cancer types and treatment appear to have varying cardiotoxicities. Combination therapy, high cumulative dose, addition of anthracyclines, and pre-existing heart disease potentially increase the risk of FAC.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...