GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Zhang, Lei  (6)
  • Pharmacy  (6)
  • 1
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 14 ( 2023-1-19)
    Abstract: Background: The chemotherapeutic doxorubicin (DOX) promotes severe skeletal muscle atrophy, which induces skeletal muscle weakness and fatigue. Soluble guanylate cyclase (sGC) contributes to a variety of pathophysiological processes, but whether it is involved in DOX-induced skeletal muscle atrophy is unclear. The present study aimed to stimulate sGC by vericiguat, a new oral sGC stimulator, to test its role in this process. Methods: Mice were randomly divided into four groups: control group, vericiguat group, DOX group, and DOX + vericiguat group. Exercise capacity was evaluated before the mice were sacrificed. Skeletal muscle atrophy was assessed by histopathological and molecular biological methods. Protein synthesis and degradation were monitored in mice and C2C12 cells. Results: In this study, a significant decrease in exercise capacity and cross-sectional area (CSA) of skeletal muscle fibers was found in mice following DOX treatment. Furthermore, DOX decreased sGC activity in mice and C2C12 cells, and a positive correlation was found between sGC activity and CSA of skeletal muscle fibers in skeletal muscle. DOX treatment also impaired protein synthesis, shown by puromycin detection, and activated ubiquitin-proteasome pathway. Following sGC stimulation, the CSA of muscle fibers was elevated, and exercise capacity was enhanced. Stimulation of sGC also increased protein synthesis and decreased ubiquitin-proteasome pathway. In terms of the underlying mechanisms, AKT/mTOR and FoxO1 pathways were impaired following DOX treatment, and stimulation of sGC restored the blunted pathways. Conclusion: These results unravel sGC stimulation can improve skeletal muscle atrophy and increase the exercise capacity of mice in response to DOX treatment by enhancing protein synthesis and inhibiting protein degradation. Stimulation of sGC may be a potential treatment of DOX-induced skeletal muscle dysfunction.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Natural Medicines, Springer Science and Business Media LLC, Vol. 66, No. 1 ( 2012-1), p. 241-247
    Type of Medium: Online Resource
    ISSN: 1340-3443 , 1861-0293
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2672615-4
    detail.hit.zdb_id: 2218478-8
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 39, No. 3 ( 2016), p. 961-974
    Abstract: Background: Both cadmium (Cd) and bisphenol A (BPA) are commonly encountered in humans' daily activities, but their combined genotoxic effects remain unclear. Methods: In the present study, we exposed a mouse embryonic fibroblast cell line (NIH3T3) to Cd for 24 h, followed by a 24 h BPA exposure to evaluate toxicity. The cytotoxicity was evaluated by viability with CCK-8 assay and lactate dehydrogenase (LDH) release. Reactive oxygen species (ROS) production was measured by 2′,7′-dichlorofluorescein diacetate (DCFH-DA). And DNA damage was measured by 8-hydroxydeoxyguanosine (8-OHdG), phosphorylated H2AX (γH2AX) and the comet assay. The flow cytometry was used to detect cell cycle distribution, and apoptosis was determined by TUNEL assay and western blot against poly-ADP-ribose polymerase (PARP). Results: The results showed that Cd or BPA treatments alone (with the exception of BPA exposure at 50 μM) did not alter cell viability. However, pre-treatment with Cd aggravated the BPA-induced reduction in cell viability; increased BPA-induced LDH release, ROS production, DNA damage and G2 phase arrest; and elevated BPA-induced TUNEL-positive cells and the expression levels of cleaved PARP. Cd exposure concurrently decreased the expression of 8-oxoguanine-DNA glycosylase-1 (OGG1), whereas OGG1 over-expression abolished the enhancement of Cd on BPA-induced genotoxicity and cytotoxicity. Conclusion: These findings indicate that Cd exposure aggravates BPA-induced genotoxicity and cytotoxicity through OGG1 inhibition.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2016
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: European Journal of Medicinal Chemistry, Elsevier BV, Vol. 179 ( 2019-10), p. 470-482
    Type of Medium: Online Resource
    ISSN: 0223-5234
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2005170-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 48, No. 4 ( 2018), p. 1416-1432
    Abstract: Background/Aims: Adipocyte-derived exosomes (ADEs) stimulate the activation of macrophages and contribute to the development of insulin resistance. Sonic Hedgehog (Shh) is an exosome-carrying protein and stimulates macrophages to secrete inflammatory cytokines. However, the impact of ADEs carrying Shh on the pro-inflammatory activation of macrophages and consequently, adipocyte insulin resistance is unclear. Methods: 3T3-L1 adipocytes were cultured with high glucose and insulin to imitate the pathogeny of insulin resistance. ADEs were isolated from conditioned media of 3T3-L1 adipocytes via differential ultracentrifugation. We explored the role of ADEs carrying Shh in the polarization of macrophages by flow cytometry. Western blot and electrophoretic mobility shift assay (EMSA) were performed to determine the activation of Shh-mediated signalling pathways. The effects of ADE-treated macrophages on adipocyte insulin signalling were studied by Western blot. Results: We found that circulating Shh-positive exosomes were increased in type 2 diabetes patients. High glucose and insulin increased the secretion of Shh-positive ADEs. The ADEs carrying Shh induced pro-inflammatory or M1 polarization of bone marrow-derived macrophages (BMDM) and RAW 264.7 macrophages. Inhibitors of Ptch and PI3K blocked the M1 polarization induced by ADEs, which suggests that ADEs carrying Shh mediated M1 macrophage polarization through the Ptch/PI3K signalling pathway. ADE-treated RAW 264.7 macrophages were subsequently used to assess the effect on insulin signalling in adipocytes. Using a co-culture assay, we showed that both ADE-treated macrophages and exosomes from these macrophages could decrease the expression of insulin-resistant substrate-1 (IRS-1) and hormone-sensitive lipase (HSL) in adipocytes. Inhibitors of Ptch and PI3K blocked the down-regulation of IRS-1 and HSL induced by ADE-treated macrophages. Conclusion: Together, these data indicate that ADEs carrying Shh induce the M1 polarization of macrophages, which contributes to insulin resistance in adipocytes through the Ptch/PI3K pathway.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 50, No. 3 ( 2018), p. 924-935
    Abstract: Background/Aims: Increasing evidence shows that reprogramming of energy metabolism is a hallmark of cancer. Considering the emergence of microRNAs as crucial modulators of cancer, this study aimed to better understand the molecular mechanisms of miR-124 in regulating glycolysis in human pancreatic cancer. Methods: RT-PCR was used to investigate the expression of monocarboxylate transporters (MCTs) in pancreatic ductal adenocarcinoma (PDAC) patient samples and the PANC-1 cell line. A public database and immunochemistry were used for comprehensive analysis of MCT1 expression. The targeting of MCT1 by miR-124 was predicted by software and validated for the MCT1 3’-UTR by dual-luciferase reporter analysis. Cell proliferation, apoptosis, migration, xenografting, and the intracellular pH and L-lactate levels were assessed. Hypoxia-inducible factor-α (HIF-1α) and lactate dehydrogenase A (LDH-A) expression levels were determined by RT-PCR and western blotting. Results: MCT1 expression was higher in PDAC tissue than in normal tissue. Inhibition of MCT1 affected lactate metabolism, resulting in a higher intracellular pH and less proliferation of PANC-1 cells. MCT1 was the target gene of miR-124. In in vitro experiments, miR-124 inhibited the glycolytic activity of PANC-1 cells by targeting MCT1, further decreasing the tumor phenotype by increasing the intracellular pH through LDH-A and HIF-1α. In in vivo experiments, overexpression of miR-124 and silencing of MCT1 significantly inhibited tumor growth. Conclusion: miR-124 inhibits the progression of PANC-1 by targeting MCT1 in the lactate metabolic pathway. Our findings provide novel evidence for further functional studies of miR-124, which might be useful for future therapeutic approaches to PDAC.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...