GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Shan, Qun  (5)
  • Pharmacy  (5)
Material
Language
Years
FID
  • Pharmacy  (5)
  • 1
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 46, No. 5 ( 2018), p. 1793-1806
    Abstract: Background/Aims: Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease, and recent studies suggested that oxidative stress (OS) contributes to the cascade that leads to dopamine cell degeneration in PD. In this study, we hypothesized that salidroside (SDS) offers protection against OS injury in 6-hydroxydopamine (6-OHDA) unilaterally lesioned rats as well as the underlying mechanism. Methods: SDS and LiCl (activators of the Wnt/β-catenin signaling pathway) administration alone and in combination with 6-OHDA injection in rats was performed 3 days before modeling for 17 consecutive days to verify the regulatory mechanism by which SDS affects the Wnt/β-catenin signaling pathway as well as to evaluate the protective effect of SDS on PD in relation to OS in vivo. In addition, pheochromocytoma 12 (PC12) cells were incubated with 10 µmol/L SDS or LiCl alone or with both in combination for 1 h followed by a 24-h incubation with 100 µmol/L 6-OHDA to obtain in vitro data. Results: In vivo the administration of LiCl was found to ameliorate behavioral deficits and dopaminergic neuron loss; increase superoxide dismutase (SOA) activity, glutathione peroxidase (GSH-Px) levels, and glycogen synthase kinase 3β phosphorylation (GSK-3β-Ser9); reduce malondialdehyde (MDA) accumulation in the striatum and the GSK-3β mRNA level; as well as elevate β-catenin and cyclinD1 mRNA and protein levels in 6-OHDA-injected rats. This SDS treatment regimen was found to strengthen the beneficial effect of LiCl on 6-OHDA-injected rats. In vitro LiCl treatment decreased the toxicity of 6-OHDA on PC12 cells and prevented apoptosis. Additionally, LiCl treatment increased SOA activity, GSH-Px levels, and GSK-3β-Ser9 phosphorylation; decreased MDA accumulation in the striatum and GSK-3β mRNA levels; as well as increased β-catenin and cyclinD1 mRNA and protein levels in 6-OHDA-treated PC12 cells. Additionally, SDS treatment increased the protective effect of LiCl on 6-OHDA-treated PC12 cells. Conclusion: Evidence from experimental models suggested that SDS may confer neuroprotection against the neurotoxicity of 6-OHDA in response to OS injury and showed that these beneficial effects may be related to regulation of the Wnt/β-catenin signaling pathway. Therefore, SDS might be a potential therapeutic agent for treating PD.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 51, No. 4 ( 2018), p. 1600-1615
    Abstract: Background/Aims: Parkinson’s disease (PD) is a neurodegenerative movement disease with a high annual incidence. Accumulating evidence demonstrates that microRNAs play important roles in the pathogenesis of multiple neurological disorders, including PD. This study aims to investigate how microRNA-200a (miR-200a) regulates striatal dopamine receptor D2 (DRD2) to affect apoptosis of striatum in rats with PD and to explore the associated mechanism. Methods: After successfully establishing a PD model by 6-hydroxydopamine injections, PD rats were mainly treated with miR-200a mimics, inhibitors, Forskolin or a combination of miR-200a inhibitors and Forskolin. High-performance liquid chromatography-electrochemical detection (HPLC-ECD) was employed to detect the levels of dopamine, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and chemistry colorimetric methods were applied to detect the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). A TUNEL assay and immunocytochemical staining were performed to observe apoptosis and tyrosine hydroxylase (TH)-positive cells in the striatum. The expression of miR-200a, DRD2, Bad, Bax, Bcl-2, cAMP and PKA was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot assays. Results: In the cellular experiments, after transfection with the inhibitor of miR-200a, decreased levels of Bax, GSH-Px, SOD, dopamine, DOPAC and HVA but increased levels of MDA and Bcl-2 were found along with a reduced apoptosis rate and increased TH-positive cell number. In addition, downregulating miR-200a resulted in lower expression of AKT, cAMP and PKA but higher expression of DRD2 and CREB, indicating that the downregulation of miR-200a increases DRD2 expression, which blocks the cAMP/PKA signaling pathway. Conclusion: This study provides evidence that the inhibition of miR-200a can repress apoptosis in the striatum via inhibition of the cAMP/PKA signaling pathway by upregulating DRD2 expression in PD rats.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 46, No. 6 ( 2018), p. 2347-2357
    Abstract: Background/Aims: MiRNAs are involved in phenotype modulation of neural cells after peripheral nerve injury. However, the roles of miRNAs on the survival of dorsal root ganglion (DRG) neurons have not yet been fully understood. Methods: In this study, the expression of miR-142-3p was measured in rat DRGs (L4-L6) during the initial 24 hours post sciatic nerve transection by microarray profiling and quantitative PCR. The functional assays including the cell viability, colony formation, cell cycle and apoptosis assays were performed in miR-142-3p mimic or inhibitor transfected cell lines. Results: MiR-142-3p was identified to be siginificantly upregulated in rat DRGs (L4-L6) during the initial 24 hours post sciatic nerve transection. MiR-142-3p mimic enhanced cell viability by promoting cell cycle and inhibiting cell apoptosis in cultured DRG neurons. In addition, cyclin-dependent kinase inhibitor 1B (CDKN1B, also known as p27/Kip1) and tissue inhibitor of metalloproteinase 3 (TIMP3) were identified as targets of miR-142-3p. Furthermore, knockdown of CDKN1B or TIMP3 by specific siRNAs could reverse the effect of miR-142-3p. Conclusions: In the conclusion, the results showed that miR-142-3p could promote neuronal cell cycle and inhibit apoptosis at least partially through suppressing CDKN1B and TIMP3 after peripheral nerve injury.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 48, No. 4 ( 2018), p. 1563-1578
    Abstract: Background/Aims: Spinal cord glioma is a highly aggressive malignancy that commonly results in high mortality due to metastasis, high recurrence and limited treatment regimens. This study aims to elucidate the effects of long non-coding RNA LINC01260 (LINC01260) on the proliferation, migration and invasion of spinal cord glioma cells by targeting Caspase recruitment domain family, member 11 (CARD11) via nuclear factor kappa B (NF-κB) signaling. Methods: The Multi Experiment Matrix (MEM) website was used for target gene prediction, and the DAVID database was used for analysis of the relationship between CARD11 and the NF-κB pathway. In total, 60 cases of glioma tissues and adjacent normal tissues were collected. Human U251 glioma cells were grouped into blank, negative control (NC), LINC01260 vector, CARD11 vector, siRNA-LINC01260, siRNA-CARD11, LINC01260 vector + CARD11 vector and LINC01260 + siRNA-CARD11 groups. A dual-luciferase reporter assay was conducted to verify the target relationship between LINC01260 and CARD11. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were employed to assess expression of LINC01260, E-cadherin, p53, CARD11, Ki67, N-cadherin, matrix metalloproteinase (MMP)-9, NF-κBp65 and NF-κBp50. MTT, flow cytometry, wound-healing and Transwell assays were performed to examine cell viability, the cell cycle, apoptosis, invasion and migration. Tumor growth was assessed through xenografts in nude mice. Results: CARD11 was confirmed to be a target gene of LINC01260 and was found to be involved in regulating the NF-κB pathway. Compared with adjacent normal tissues, glioma tissues showed reduced expression of LINC01260 and elevated expression of CARD11 and genes related to apoptosis, invasion and migration; activation of NF-κB signaling was also observed. In contrast to the blank and NC groups, an elevated number of cells arrested in G1 phase, increased apoptosis and reduced cell proliferation, invasion and number of cells arrested in S and G2 phases, as well as tumor growth were found for the LINC01260 vector and siRNA-CARD11 groups. Conclusions: Our findings demonstrate that overexpression of LINC01260 inhibits spinal cord glioma cell proliferation, migration and invasion by targeting CARD11 via NF-κB signaling suppression.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 9 ( 2018-8-22)
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...