GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Liu, Qing  (1)
  • Wanggou, Siyi  (1)
  • Pharmacy  (1)
Material
Publisher
Person/Organisation
Language
Years
FID
  • Pharmacy  (1)
  • 1
    Online Resource
    Online Resource
    S. Karger AG ; 2016
    In:  Cellular Physiology and Biochemistry Vol. 40, No. 5 ( 2016), p. 1013-1028
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 40, No. 5 ( 2016), p. 1013-1028
    Abstract: Background: Cancer cells are frequently addicted to deregulated oncogenic protein translation that usually arises as a consequence of increased signaling flux from eIF4F activation. The small molecule 4EG-I, a potent inhibitor of translation initiation through disrupting eIF4E/eIF4G interaction, has been shown to exert anticancer effects in animal models of human cancers. Methods: Here, we extensively investigated the anticancer activity of 4EGI-1 in human glioma U87 cells. The anti-cancer effects of 4EGI-1 were measured by cell viability, lactate dehydrogenase (LDH) release, TUNEL staining, flow cytometry and western blot analysis in vitro, and also examined in a U87 xenograft model in vivo. The potential underlying molecular mechanisms were investigated by measuring mitochondrial function and ER stress. Results: We found that 4EGI-1 impaired the assembly of the eIF4F complex and decreased the expression of the eIF4E regulated proteins. The results of TUNEL staining and flow cytometry showed that 4EGI-1 treatment induced apoptotic cell death in a dose-dependent manner. Furthermore, 4EGI-1-induced apoptosis in U87 cells was associated with mitochondrial dysfunction and activation of the intrinsic mitochondrial pathway, which was dependent on the induction of the pro-apoptotic protein Bax. In addition, 4EGI-1 treatment triggered ER stress, which was evidenced by morphological changes of ER lumen and ER calcium release, as well as the dose-dependent increases in the expression of ER stress related proteins. Moreover, knockdown of the ER chaperone GRP-78 through siRNA was shown to partially reverse the 4EGI-1-induced ER stress in U87 cells. In vivo, 4EGI-1 strongly inhibited growth of U87 glioma xenografts without any apparent organ related toxicities. Conclusion: These data indicate that the use of inhibitors that directly target the translation initiation complex eIF4F could represent a potential novel approach for human glioma therapy.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2016
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...