GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
  • Jin, Weihua  (5)
  • Pharmacy  (5)
Material
Publisher
  • MDPI AG  (5)
Language
Years
FID
  • Pharmacy  (5)
  • 1
    In: Marine Drugs, MDPI AG, Vol. 19, No. 2 ( 2021-01-25), p. 58-
    Abstract: Parkinson’s disease (PD), one of the most common neurodegenerative disorders, is caused by dopamine depletion in the striatum and dopaminergic neuron degeneration in the substantia nigra. In our previous study, we hydrolyzed the fucoidan from Saccharina japonica, obtaining three glucuronomannan oligosaccharides (GMn; GM1, GM2, and GM3) and found that GMn ameliorated behavioral deficits in Parkinsonism mice and downregulated the apoptotic signaling pathway, especially with GM2 showing a more effective role in neuroprotection. However, the neuroprotective mechanism is unclear. Therefore, in this study, we aimed to assess the neuroprotective effects of GM2 in vivo and in vitro. We applied GM2 in 1-methyl-4-phenylpyridinium (MPP+)-treated PC12 cells, and the results showed that GM2 markedly improved the cell viability and mitochondrial membrane potential, inhibited MPP+-induced apoptosis, and enhanced autophagy. Furthermore, GM2 contributed to reducing the loss of dopaminergic neurons in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice through enhancing autophagy. These data indicate that a possible protection of mitochondria and upregulation of autophagy might underlie the observed neuroprotective effects, suggesting that GM2 has potential as a promising multifunctional lead disease-modifying therapy for PD. These findings might pave the way for additional treatment strategies utilizing carbohydrate drugs in PD.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Marine Drugs, MDPI AG, Vol. 16, No. 3 ( 2018-03-08), p. 85-
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Marine Drugs, MDPI AG, Vol. 18, No. 7 ( 2020-06-28), p. 340-
    Abstract: The water-soluble polysaccharide EP2, from Enteromorpha prolifera, belongs to the group of polysaccharides known as glucuronoxylorhamnan, which mainly contains glucuronic acid (GlcA), xylose (Xyl), and rhamnose (Rha). The aim of this study was to detect the immunomodulatory effects of EP2 on RAW 264.7 macrophages and cyclophosphamide (CYP)-induced immunosuppression mouse models. The cells were treated with EP2 for different time periods (0, 0.5, 1, 3, and 6 h). The results showed that EP2 promoted nitric oxide production and up-regulated the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in a time-dependent manner. Furthermore, we found that EP2-activated iNOS, COX2, and NLRP3 inflammasomes, and the TLR4/MAPK/NF-κB signaling pathway played an important role. Moreover, EP2 significantly increased the body weight, spleen index, thymus index, inflammatory cell counts, and the levels of IL-1β, IL-6, and TNF-α in CYP-induced immunosuppression mouse models. These results indicate that EP2 might be a potential immunomodulatory drug and provide the scientific basis for the comprehensive utilization and evaluation of E. prolifera in future applications.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Marine Drugs, MDPI AG, Vol. 18, No. 9 ( 2020-08-23), p. 438-
    Abstract: Parkinson’s disease (PD), characterized by dopaminergic neuron degeneration in the substantia nigra and dopamine depletion in the striatum, affects up to 1% of the global population over 50 years of age. Our previous study found that a heteropolysaccharide from Saccharina japonica exhibits neuroprotective effects through antioxidative stress. In view of its high molecular weight and complex structure, we degraded the polysaccharide and subsequently obtained four oligosaccharides. In this study, we aimed to further detect the neuroprotective mechanism of the oligosaccharides. We applied MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to induce PD, and glucuronomannan oligosaccharides (GMn) was subsequently administered. Results showed that GMn ameliorated behavioral deficits in Parkinsonism mice. Furthermore, we observed that glucuronomannan oligosaccharides contributed to down-regulating the apoptotic signaling pathway through enhancing the expression of tyrosine hydroxylase (TH) in dopaminergic neurons. These results suggest that glucuronomannan oligosaccharides protect dopaminergic neurons from apoptosis in PD mice.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2018
    In:  Marine Drugs Vol. 16, No. 9 ( 2018-08-21), p. 291-
    In: Marine Drugs, MDPI AG, Vol. 16, No. 9 ( 2018-08-21), p. 291-
    Abstract: Glucuronomannan oligosaccharides (Gs) were derived from fucoidan, which was extracted from the brown alga Sargassum thunbergii. Sulfated glucuronomannan oligosaccharides (SGs) were obtained by the sulfation of Gs. NMR techniques were used to reveal that the order of sulfation was Man-C6 〉 Man-C4 〉 Man-C1R 〉 GlcA-C3 〉 Man-C3 〉 GlcA-C2. Finally, the antioxidant activities (hydroxyl radical scavenging activity, superoxide radical scavenging activity, reducing power and DPPH radical scavenging activity) of Gs and SGs were determined. The findings showed that the higher the degree of polymerization, the better the activity, except for the hydroxyl radical scavenging activity. In addition, the higher the sulfate content, the lower the activities for the reducing power and DPPH radical scavenging activity. Opposite results were found for the superoxide radical scavenging activity. Finally, compared with fucoidan, most Gs and SGs had higher antioxidant activity, suggesting that they might be good candidates for antioxidants.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...