GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gao, Yong  (2)
  • Pharmacy  (2)
Material
Language
Years
FID
  • Pharmacy  (2)
  • 1
    In: Current Drug Metabolism, Bentham Science Publishers Ltd., Vol. 20, No. 1 ( 2019-03-11), p. 15-22
    Abstract: Diabetes, with an increased prevalence and various progressive complications, has become a significant global health challenge. The concrete mechanisms responsible for the development of diabetes still remain incompletely unknown, although substantial researches have been conducted to search for the effective therapeutic targets. This review aims to reveal the novel roles of Xenobiotic Nuclear Receptors (XNRs), including the Peroxisome Proliferator-Activated Receptor (PPAR), the Farnesoid X Receptor (FXR), the Liver X Receptor (LXR), the Pregnane X Receptor (PXR) and the Constitutive Androstane Receptor (CAR), in the development of diabetes and provide potential strategies for research and treatment of metabolic diseases. Methods: We retrieved a large number of original data about these five XNRs and organized to focus on their recently discovered functions in diabetes and its complications. Results: Increasing evidences have suggested that PPAR, FXR, LXR ,PXR and CAR are involved in the development of diabetes and its complications through different mechanisms, including the regulation of glucose and lipid metabolism, insulin and inflammation response and related others. Conclusion: PPAR, FXR, LXR, PXR, and CAR, as the receptors for numerous natural or synthetic compounds, may be the most effective therapeutic targets in the treatment of metabolic diseases.
    Type of Medium: Online Resource
    ISSN: 1389-2002
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2019
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2019
    In:  Current Drug Metabolism Vol. 20, No. 1 ( 2019-03-11), p. 29-35
    In: Current Drug Metabolism, Bentham Science Publishers Ltd., Vol. 20, No. 1 ( 2019-03-11), p. 29-35
    Abstract: PXR (Pregnane X Receptor) and CAR (Constitutive Androstane Receptor) are termed as xenobiotic receptors, which are known as core factors in regulation of the transcription of metabolic enzymes and drug transporters. However, accumulating evidence has shown that PXR and CAR exert their effects on energy metabolism through the regulation of gluconeogenesis, lipogenesis and β-oxidation. Therefore, in this review, we are trying to summary recent advances to show how xenobiotic receptors regulate energy metabolism. Methods: A structured search of databases has been performed by using focused review topics. According to conceptual framework, the main idea of research literature was summarized and presented. Results: For introduction of each receptor, the general introduction and the critical functions in hepatic glucose and lipid metabolism have been included. Recent important studies have shown that CAR acts as a negative regulator of lipogenesis, gluconeogenesis and β -oxidation. PXR activation induces lipogenesis, inhibits gluconeogenesis and inhabits β-oxidation. Conclusion: In this review, the importance of xenobiotic receptors in hepatic glucose and lipid metabolism has been confirmed. Therefore, PXR and CAR may become new therapeutic targets for metabolic syndrome, including obesity and diabetes. However, further research is required to promote the clinical application of this new energy metabolism function of xenobiotic receptors.
    Type of Medium: Online Resource
    ISSN: 1389-2002
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2019
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...