GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Unknown  (3)
  • Pharmacy  (3)
  • 1
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 13 ( 2022-7-22)
    Abstract: Cancer becomes one of the main causes of human deaths in the world due to the high incidence and mortality rate and produces serious economic burdens. With more and more attention is paid on cancer, its therapies are getting more of a concern. Previous research has shown that the occurrence, progression, and treatment prognosis of malignant tumors are closely related to genetic and gene mutation. CRISPR/Cas9 has emerged as a powerful method for making changes to the genome, which has extensively been applied in various cell lines. Establishing the cell and animal models by CRISPR/Cas9 laid the foundation for the clinical trials which possibly treated the tumor. CRISPR-Cas9-mediated genome editing technology brings a great promise for inhibiting migration, invasion, and even treatment of tumor. However, the potential off-target effect limits its clinical application, and the effective ethical review is necessary. The article reviews the molecular mechanisms of CRISPR/Cas9 and discusses the research and the limitation related to cancer clinical trials.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Pharmacology Vol. 12 ( 2021-5-26)
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 12 ( 2021-5-26)
    Abstract: Background: The use of direct oral anticoagulant (DOAC) off-label doses in atrial fibrillation (AF) patients may result in poor clinical outcomes. However, the true prevalence remains scarce. This study aims at estimating the prevalence of DOAC off-label doses in AF patients. Methods: Databases of MEDLINE, EMBASE, and COCHRANE were searched from inception through February 2020 for real-world studies that reported the off-label definition and prevalence data of AF patients using DOACs. The primacy outcomes were the overall prevalence of DOAC off-label doses and the corresponding underdose and overdose. The random-effects model was used for data synthesis. Variations on individual DOAC and different regions were examined by subgroup analyses. Results: A total of 23 studies involving 162,474 AF patients were finally included. The overall prevalence of DOAC off-label doses was 24% (95% CI, 19–28%), with 18% for dabigatran, 27% for rivaroxaban, 24% for apixaban, and 26% for edoxaban. The prevalence of underdosed DOACs was 20% (95% CI, 16–24%) with significant difference among individual anticoagulants (13% for dabigatran, 22% for rivaroxaban, 22% for apixaban, and 18% for edoxaban; P interaction = 0.02). The prevalence of overdosed DOACs was 5% (95% CI, 3–7%), with the lowest prevalence observed in apixaban (2%). Subgroup analyses by regions demonstrated that the prevalence of DOAC off-label doses was higher in Asia (32%) than in North America (14%) and in Europe (22%), with underdose being predominant. Regardless of different regions, the prevalence of overdose was relatively low (4–6%). Conclusion: This study provides an estimation of DOAC off-label doses in the real-world setting. The prevalence rate of DOAC off-label doses in AF patients was relatively high, with underdose being predominant. Clinicians in Asia preferred to prescribe underdose of DOACs to AF patients. More evidence about the appropriateness of DOAC off-label doses in AF patients is urgently needed. Education programs concerning the appropriate prescription of DOACs within the drug labels and accepted guidelines are necessary to DOAC prescribers to ensure the safety and effectiveness of anticoagulation therapy for patients with AF.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 14 ( 2023-2-15)
    Abstract: Objectives: Dimeric pyruvate kinase (PK) M2 (PKM2) plays an important role in promoting the accumulation of hypoxia-inducible factor (HIF)-1α, mediating aberrant glycolysis and inducing fibrosis in diabetic kidney disease (DKD). The aim of this work was to dissect a novel regulatory mechanism of Yin and Yang 1 (YY1) on lncRNA-ARAP1-AS2/ARAP1 to regulate EGFR/PKM2/HIF-1α pathway and glycolysis in DKD. Materials and methods: We used adeno-associated virus (AAV)-ARAP1 shRNA to knocked down ARAP1 in diabetic mice and overexpressed or knocked down YY1, ARAP1-AS2 and ARAP1 expression in human glomerular mesangial cells. Gene levels were assessed by Western blotting, RT-qPCR, immunofluorescence staining and immunohistochemistry. Molecular interactions were determined by RNA pull-down, co-immunoprecipitation, ubiquitination assay and dual-luciferase reporter analysis. Results: YY1, ARAP1-AS2, ARAP1, HIF-1α, glycolysis and fibrosis genes expressions were upregulated and ARAP1 knockdown could inhibit dimeric PKM2 expression and partly restore tetrameric PKM2 formation, while downregulate HIF-1α accumulation and aberrant glycolysis and fibrosis in in-vivo and in-vitro DKD models. ARAP1 knockdown attenuates renal injury and renal dysfunction in diabetic mice. ARAP1 maintains EGFR overactivation in-vivo and in-vitro DKD models. Mechanistically, YY1 transcriptionally upregulates ARAP1-AS2 and indirectly regulates ARAP1 and subsequently promotes EGFR activation, HIF-1α accumulation and aberrant glycolysis and fibrosis. Conclusion: Our results first highlight the role of the novel regulatory mechanism of YY1 on ARAP1-AS2 and ARAP1 in promoting aberrant glycolysis and fibrosis by EGFR/PKM2/HIF-1α pathway in DKD and provide potential therapeutic strategies for DKD treatments.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...