GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Xu, Junshi  (1)
  • Mobility and traffic research  (1)
Material
Publisher
Person/Organisation
Language
Years
FID
  • Mobility and traffic research  (1)
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2023
    In:  Transportation Research Record: Journal of the Transportation Research Board Vol. 2677, No. 2 ( 2023-02), p. 1445-1454
    In: Transportation Research Record: Journal of the Transportation Research Board, SAGE Publications, Vol. 2677, No. 2 ( 2023-02), p. 1445-1454
    Abstract: This paper addresses the problem of accurately estimating traffic conditions based on sparse GPS information. GPS data have limited spatial-temporal availability, particularly at a regional scale. Therefore, it lacks reliability to accurately estimate traffic conditions of a transportation network. This study proposes a novel methodology to address this problem. First, instead of estimating traffic conditions on a geographic road segment, traffic conditions are estimated for trip segments, which span multiple road segments. Second, machine learning methods are applied to classify traffic conditions. In this study, traffic conditions are defined as the combination of congestion level and road type. This study develops two machine learning models—a random forest (RF) model and a supervised clustering method—to classify traffic conditions, using trip characteristics such as average speed and acceleration. The two models are compared in relation to their accuracy and computational efficiency. Results show that speed-related trip characteristics, such as average instantaneous speed, are the most important variables for classifying traffic conditions in both methods. In addition, the proportion of idling in a trip is essential in distinguishing the Congested Highway and Uncongested Urban traffic conditions when applying the supervised clustering method. The comparison shows that the RF model has a higher estimation accuracy (81%) than the supervised clustering method (72%). Overall, this study shows that traffic conditions can be determined efficiently even in cases of limited GPS data.
    Type of Medium: Online Resource
    ISSN: 0361-1981 , 2169-4052
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2023
    detail.hit.zdb_id: 2403378-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...