GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wang, Lilei  (1)
  • Mobility and traffic research  (1)
Material
Publisher
Person/Organisation
Language
Years
FID
  • Mobility and traffic research  (1)
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2022
    In:  Transportation Research Record: Journal of the Transportation Research Board Vol. 2676, No. 8 ( 2022-08), p. 601-618
    In: Transportation Research Record: Journal of the Transportation Research Board, SAGE Publications, Vol. 2676, No. 8 ( 2022-08), p. 601-618
    Abstract: Signaling positioning technology provides a new opportunity to understand an individual’s travel characteristics. In recent studies, the travel parameters obtained are mainly macroscopic travel information. However, extracting detailed trip chain information, such as the trip mode and mode-switching time point, remains a challenge. Furthermore, because of the iterative development of wireless networks, existing communication operators usually store different frequencies and accuracy (2G/3G and 4G) of signaling data simultaneously, making the refined identification of travel information more difficult. Therefore, this paper proposes a new method. First, we use the shortest distance algorithm to match the signaling data with the road network. Second, a wavelet transform modulus maximum (WTMM) algorithm is proposed to divide multimodal travel trajectories into single-mode trip segments; thus, spatiotemporal information related to mode transfer can be obtained. Finally, an unsupervised fuzzy kernel c-means clustering (FKCM) algorithm is proposed to distinguish travel modes. As comparison data, smartphone GPS and travel log data are also collected to analyze the detection result and improve the method. The identification errors of mode-switching time points at different frequencies are all less than 360 s. The average correct rate of traffic mode identification for 2G is 65.1%, and the average correct rate of traffic mode identification for 3G is 78.2%. 4G intensive cellular positioning data has a significantly better recognition effect than low-frequency data; the average trip mode detection accuracy reaches 89.6%, and the mode-switching time point detection errors are within 300 s.
    Type of Medium: Online Resource
    ISSN: 0361-1981 , 2169-4052
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2022
    detail.hit.zdb_id: 2403378-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...