GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lv, Bin  (1)
  • Mobility and traffic research  (1)
Material
Publisher
Person/Organisation
Language
Years
FID
  • Mobility and traffic research  (1)
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2019
    In:  Transportation Research Record: Journal of the Transportation Research Board Vol. 2673, No. 6 ( 2019-06), p. 153-164
    In: Transportation Research Record: Journal of the Transportation Research Board, SAGE Publications, Vol. 2673, No. 6 ( 2019-06), p. 153-164
    Abstract: This research presented a new approach for vehicle classification using roadside LiDAR sensor. Six features (one feature, object height profile, contains 10 sub-features) extracted from the vehicle trajectories were applied to distinguish different classes of vehicles. The vehicle classification aims to assign the objects into ten different types defined by FHWA. A database containing 1,056 manually marked samples and their corresponding pictures was provided for analysis. Those samples were collected at different scenarios (roads and intersections, different speed limits, day and night, different distance to LiDAR, etc.). Naïve Bayes, K-nearest neighbor classification, random forest (RF), and support vector machine were applied for vehicle classification. The results showed that the performance of different methods varied by class. RF has the highest overall accuracy among those investigated methods. Some types were merged together to serve different types of users, which can also improve the accuracy of vehicle classification. The validation indicated that the distance between the object and the roadside LiDAR can influence the accuracy. This research also provided the distribution of the overall accuracy of RF along the distance to LiDAR. For the VLP-16 LiDAR, to achieve an accuracy of 91.98%, the distance between the object and LiDAR should be less than 30 ft. Users can set up the location of the roadside LiDAR based on their own requirements of the classification accuracy.
    Type of Medium: Online Resource
    ISSN: 0361-1981 , 2169-4052
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2019
    detail.hit.zdb_id: 2403378-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...