GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Feng, Rui  (1)
  • Mobility and traffic research  (1)
Material
Publisher
Person/Organisation
Language
Years
FID
  • Mobility and traffic research  (1)
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2023
    In:  Transportation Research Record: Journal of the Transportation Research Board
    In: Transportation Research Record: Journal of the Transportation Research Board, SAGE Publications
    Abstract: With the enrichment of smartphone uses, phone-related driving distractions have become a threat to driving safety. One way to mitigate driving distractions is to detect them and provide real-time warnings. However, most existing driving distraction recognition algorithms are pretrained models composed of structures, hyperparameters, and parameters that may not be able to account for drivers’ individual differences and, thus, might result in low model accuracy. This study proposes a domain-specific hierarchical automated machine learning (HAT-ML) model that self-learns personalized optimal models to detect driving distractions from vehicle movement data. The HAT-ML model integrates key modeling steps into auto-optimizable layers, including knowledge-based feature extraction, feature selection by recursive feature elimination, automated algorithm selection, and hyperparameter autotuning by Bayesian optimization. In our eight-degrees-of-freedom driving simulator experiment, we demonstrated the effectiveness of the proposed model using three driving distraction tasks: browsing a short message, browsing a long message, and answering a phone call. The HAT-ML model was found to be reliable and robust for predicting phone-related driving distraction, achieving satisfactory results with a predictive accuracy of 80% at the group level and 90% at the individual level. Moreover, the results revealed that each distraction and driver type required different optimized hyperparameter values, which demonstrated the value of utilizing HAT-ML to detect driving distractions. The key elements that dominated the performance of the model have several theoretical and practical implications. The proposed method not only enhanced performance, but also provided data-driven insights about model development.
    Type of Medium: Online Resource
    ISSN: 0361-1981 , 2169-4052
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2023
    detail.hit.zdb_id: 2403378-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...