GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Li, Sulan  (1)
  • Mathematics  (1)
Material
Publisher
Person/Organisation
Language
Years
FID
  • Mathematics  (1)
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2014
    In:  Journal of Applied Mathematics Vol. 2014 ( 2014), p. 1-10
    In: Journal of Applied Mathematics, Hindawi Limited, Vol. 2014 ( 2014), p. 1-10
    Abstract: Gram matrix is an important tool in system analysis and design as it provides a description of the input-output behavior for system; its partial derivative matrix is often required in some numerical algorithms. It is essential to study computation of these matrices. Analytical methods only work in some special circumstances; for example, the system matrix is diagonal matrix or Jordan matrix. In most cases, numerical integration method is needed, but there are two problems when compute using traditional numerical integration method. One is low accuracy: as high accuracy requires extremely small integration step, it will result in large amount of computation; and another is stability and stiffness issues caused by the dependence on the property of system matrix. In order to overcome these problems, this paper proposes an efficient numerical method based on the key idea of precise integration method (PIM) for the Gram matrix and its partial derivative of linear time-invariant systems. Since matrix inverse operation is not required in this method, it can be used with high precision no matter the system is normal or singular. The specific calculation algorithm and block diagram are also given. Finally, numerical examples are given to demonstrate the correctness and validity of this method.
    Type of Medium: Online Resource
    ISSN: 1110-757X , 1687-0042
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2014
    detail.hit.zdb_id: 2578385-3
    SSG: 17,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...