GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 15 ( 2006-04-11), p. 5965-5970
    Kurzfassung: Recombinant human erythropoietin (rhEPO) is receiving increasing attention as a potential therapy for prevention of injury and restoration of function in nonhematopoietic tissues. However, the minimum effective dose required to mimic and augment these normal paracrine functions of erythropoietin (EPO) in some organs (e.g., the brain) is higher than for treatment of anemia. Notably, a dose-dependent risk of adverse effects has been associated with rhEPO administration, especially in high-risk groups, including polycythemia–hyperviscosity syndrome, hypertension, and vascular thrombosis. Of note, several clinical trials employing relatively high dosages of rhEPO in oncology patients were recently halted after an increase in mortality and morbidity, primarily because of thrombotic events. We recently identified a heteromeric EPO receptor complex that mediates tissue protection and is distinct from the homodimeric receptor responsible for the support of erythropoiesis. Moreover, we developed receptor-selective ligands that provide tools to assess which receptor isoform mediates which biological consequence of rhEPO therapy. Here, we demonstrate that rhEPO administration in the rat increases systemic blood pressure, reduces regional renal blood flow, and increases platelet counts and procoagulant activities. In contrast, carbamylated rhEPO, a heteromeric receptor-specific ligand that is fully tissue protective, increases renal blood flow, promotes sodium excretion, reduces injury-induced elevation in procoagulant activity, and does not effect platelet production. These preclinical findings suggest that nonerythropoietic tissue-protective ligands, which appear to elicit fewer adverse effects, may be especially useful in clinical settings for tissue protection.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2006
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Proceedings of the National Academy of Sciences ; 1998
    In:  Proceedings of the National Academy of Sciences Vol. 95, No. 24 ( 1998-11-24), p. 14367-14372
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 95, No. 24 ( 1998-11-24), p. 14367-14372
    Kurzfassung: This study investigated whether endothelin-1 (ET-1), a potent vasoconstrictor, which also stimulates cell proliferation, contributes to endothelial dysfunction and atherosclerosis. Apolipoprotein E (apoE)-deficient mice and C57BL/6 control mice were treated with a Western-type diet to accelerate atherosclerosis with or without ET A receptor antagonist LU135252 (50 mg/kg/d) for 30 wk. Systolic blood pressure, plasma lipid profile, and plasma nitrate levels were determined. In the aorta, NO-mediated endothelium-dependent relaxation, atheroma formation, ET receptor-binding capacity, and vascular ET-1 protein content were assessed. In apoE-deficient but not C57BL/6 mice, severe atherosclerosis developed within 30 wk. Aortic ET-1 protein content ( P 〈 0.0001) and binding capacity for ET A receptors was increased as compared with C57BL/6 mice. In contrast, NO-mediated, endothelium-dependent relaxation to acetylcholine (56 ± 3 vs. 99 ± 2%, P 〈 0.0001) and plasma nitrate were reduced (57.9 ± 4 vs. 93 ± 10 μmol/liter, P 〈 0.01). Treatment with the ET A receptor antagonist LU135252 for 30 wk had no effect on the lipid profile or systolic blood pressure in apoE-deficient mice, but increased NO-mediated endothelium-dependent relaxation (from 56 ± 3 to 93 ± 2%, P 〈 0.0001 vs. untreated) as well as circulating nitrate levels (from 57.9 ± 4 to 80 ± 8.3 μmol/liter, P 〈 0.05). Chronic ET A receptor blockade reduced elevated tissue ET-1 levels comparable with those found in C57BL/6 mice and inhibited atherosclerosis in the aorta by 31% without affecting plaque morphology or ET receptor-binding capacity. Thus, chronic ET A receptor blockade normalizes NO-mediated endothelial dysfunction and reduces atheroma formation independent of plasma cholesterol and blood pressure in a mouse model of human atherosclerosis. ET A receptor blockade may have therapeutic potential in patients with atherosclerosis.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 1998
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...