GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 27 ( 2017-07-03)
    Abstract: Flagella and cilia are critical cellular organelles that provide a means for cells to sense and progress through their environment. The central component of flagella and cilia is the axoneme, which comprises the “9+2” microtubule arrangement, dynein arms, radial spokes, and the nexin-dynein regulatory complex ( N -DRC). Failure to properly assemble components of the axoneme leads to defective flagella and in humans leads to a collection of diseases referred to as ciliopathies. Ciliopathies can manifest as severe syndromic diseases that affect lung and kidney function, central nervous system development, bone formation, visceral organ organization, and reproduction. T-Complex-Associated–Testis-Expressed 1 (TCTE1) is an evolutionarily conserved axonemal protein present from Chlamydomonas (DRC5) to mammals that localizes to the N -DRC. Here, we show that mouse TCTE1 is testis-enriched in its expression, with its mRNA appearing in early round spermatids and protein localized to the flagellum. TCTE1 is 498 aa in length with a leucine rich repeat domain at the C terminus and is present in eukaryotes containing a flagellum. Knockout of Tcte1 results in male sterility because Tcte1 -null spermatozoa show aberrant motility. Although the axoneme is structurally normal in Tcte1 mutant spermatozoa, Tcte1 -null sperm demonstrate a significant decrease of ATP, which is used by dynein motors to generate the bending force of the flagellum. These data provide a link to defining the molecular intricacies required for axoneme function, sperm motility, and male fertility.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 361, No. 6402 ( 2018-08-10), p. 582-585
    Abstract: Conventional theory predicts that ultrahigh lattice thermal conductivity can only occur in crystals composed of strongly bonded light elements, and that it is limited by anharmonic three-phonon processes. We report experimental evidence that departs from these long-held criteria. We measured a local room-temperature thermal conductivity exceeding 1000 watts per meter-kelvin and an average bulk value reaching 900 watts per meter-kelvin in bulk boron arsenide (BAs) crystals, where boron and arsenic are light and heavy elements, respectively. The high values are consistent with a proposal for phonon-band engineering and can only be explained by higher-order phonon processes. These findings yield insight into the physics of heat conduction in solids and show BAs to be the only known semiconductor with ultrahigh thermal conductivity.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 377, No. 6604 ( 2022-07-22), p. 437-440
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6604 ( 2022-07-22), p. 437-440
    Abstract: Boron arsenide is a semiconductor with high thermal conductivity and electron-hole mobility.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 42 ( 2013-10-15), p. 16963-16968
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 42 ( 2013-10-15), p. 16963-16968
    Abstract: Identification of genes influencing complex traits is hampered by genetic heterogeneity, the modest effect size of many alleles, and the likely involvement of rare and uncommon alleles. Etiologic complexity can be simplified in model organisms. By genomic sequencing, linkage analysis, and functional validation, we identified that genetic variation of Grm2 , which encodes metabotropic glutamate receptor 2 (mGluR2), alters alcohol preference in animal models. Selectively bred alcohol-preferring (P) rats are homozygous for a Grm2 stop codon ( Grm2 *407) that leads to largely uncompensated loss of mGluR2. mGluR2 receptor expression was absent, synaptic glutamate transmission was impaired, and expression of genes involved in synaptic function was altered. Grm2 *407 was linked to increased alcohol consumption and preference in F2 rats generated by intercrossing inbred P and nonpreferring rats. Pharmacologic blockade of mGluR2 escalated alcohol self-administration in Wistar rats, the parental strain of P and nonpreferring rats. The causal role of mGluR2 in altered alcohol preference was further supported by elevated alcohol consumption in Grm2 −/− mice. Together, these data point to mGluR2 as an origin of alcohol preference and a potential therapeutic target.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 16 ( 2011-04-19), p. 6626-6631
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 16 ( 2011-04-19), p. 6626-6631
    Abstract: The hippocampus is a key brain region involved in both short- and long-term memory processes and may play critical roles in drug-associated learning and addiction. Using whole genome sequencing of mRNA transcripts (RNA-Seq) and immunoprecipitation-enriched genomic DNA (ChIP-Seq) coupled with histone H3 lysine 4 trimethylation (H3K4me3), we found extensive hippocampal gene expression changes common to both cocaine-addicted and alcoholic individuals that may reflect neuronal adaptations common to both addictions. However, we also observed functional changes that were related only to long-term cocaine exposure, particularly the inhibition of mitochondrial inner membrane functions related to oxidative phosphorylation and energy metabolism, which has also been observed previously in neurodegenerative diseases. Cocaine- and alcohol-related histone H3K4me3 changes highly overlapped, but greater effects were detected under cocaine exposure. There was no direct correlation, however, between either cocaine- or alcohol- related histone H3k4me3 and gene expression changes at an individual gene level, indicating that transcriptional regulation as well as drug-related gene expression changes are outcomes of a complex gene-regulatory process that includes multifaceted histone modifications.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 22 ( 2017-05-30), p. 5607-5611
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 22 ( 2017-05-30), p. 5607-5611
    Abstract: Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm 2 at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel–iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm 2 at an overpotential of 177 mV, 500 mA/cm 2 at only 265 mV, and 1,705 mA/cm 2 at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO 2 catalyst.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 26 ( 2019-06-25), p. 13107-13115
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 26 ( 2019-06-25), p. 13107-13115
    Abstract: Artificially selected model organisms can reveal hidden features of the genetic architecture of the complex disorders that they model. Addictions are disease phenotypes caused by different intermediate phenotypes and pathways and thereby are potentially highly polygenic. High responder (bHR) and low responder (bLR) rat lines have been selectively bred (b) for exploratory locomotion (EL), a behavioral phenotype correlated with novelty-seeking, impulsive response to reward, and vulnerability to addiction, and is inversely correlated with spontaneous anxiety and depression-like behaviors. The rapid response to selection indicates loci of large effect for EL. Using exome sequencing of HR and LR rats, we identified alleles in gene-coding regions that segregate between the two lines. Quantitative trait locus (QTL) analysis in F2 rats derived from a bHR × bLR intercross confirmed that these regions harbored genes affecting EL. The combined effects of the seven genome-wide significant QTLs accounted for approximately one-third of the total variance in EL, and two-thirds of the variance attributable to genetic factors, consistent with an oligogenic architecture of EL estimated both from the phenotypic distribution of F2 animals and rapid response to selection. Genetic association in humans linked APBA2 , the ortholog of the gene at the center of the strongest QTL, with substance use disorders and related behavioral phenotypes. Our finding is also convergent with molecular and animal behavioral studies implicating Apba2 in locomotion. These results provide multilevel evidence for genes/loci influencing EL. They shed light on the genetic architecture of oligogenicity in animals artificially selected for a phenotype modeling a more complex disorder in humans.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 15 ( 2022-04-12)
    Abstract: Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub ( https://covid19forecasthub.org/ ) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 36 ( 2006-09-05), p. 13345-13350
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 36 ( 2006-09-05), p. 13345-13350
    Abstract: The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released “on demand” by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N -arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE–PLD). Here we document a biosynthetic pathway for anandamide in mouse brain and RAW264.7 macrophages that involves the phospholipase C (PLC)-catalyzed cleavage of NAPE to generate a lipid, phosphoanandamide, which is subsequently dephosphorylated by phosphatases, including PTPN22, previously described as a protein tyrosine phosphatase. Bacterial endotoxin (LPS)-induced synthesis of anandamide in macrophages is mediated exclusively by the PLC/phosphatase pathway, which is up-regulated by LPS, whereas NAPE–PLD is down-regulated by LPS and functions as a salvage pathway of anandamide synthesis when the PLC/phosphatase pathway is compromised. Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 19 ( 2010-05-11), p. 8695-8700
    Abstract: Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (α), beta (β), and theta (θ) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes ( SGIP1 , ST6GALNAC3 , and UGDH ) with nominal association to variability of θ or α power. SGIP1 was estimated to account for 8.8% of variance in θ power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with θ power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by θ EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...